
User manual for Agilex Cobot kit

User manual for Agilex Cobot kit
0 Introduction
1 Main configuration list and parameter specification

1.1Main configuration
1.2 Main parts

2 Hardware installation and electrical instructions
1. Hardware system composition
2.Hardware topology connection

3 Simulation（Coming soon）
4 Example of development

1.Pre-development preparation
1.Download the remote desktop tool
2. IP setting
3. Use ar_track_alvar to achieve visual positioning and tracking
4.Use GMapping to build a map
5.Use move_base for navigation
6. Use smach library to achieve tasks status switched.

af://n0

7.Use moveit for robot arm route planning
2. Run the function

1. Run robot arm
2. Start camera
3. Start robot arm claw
4. Start agx_aubo_pick node
5. Start smach states machine node
6. Start mapping
7. Start navigation
8. Record the coordinates of two points
9. Mobile grab demonstration
10. In place grab and place demonstration

3 FAQ and troubleshooting
4 Figures and figure legends
5 Others

0 Introduction
Agilex Cobot series development kit is developed specifically for the industry research and
education application. This development kit is based on Agilex's ROS product ecosystem，which
highly meet the flexible requirement on research and education robots by integrating high
performance industrial computer, high accuracy LiDAR，multiple sensors，multi-DOF robot arm
and visual perception. It includes functions of multi-line lidar automatic navigation，robot arm
moveit motion control planning，visual identity and arm automatically grab to give a solution and
ultimate user experience to customer for high technical complexity and high integration difficulty
applications. The product including the whole technical manuals and all codes open-source will
reduce the difficulty of user's specific application and study. The development kit can be widely
used in agriculture，intelligent manufacturing，education training，scientific discovery and so
on.

1 Main configuration list and parameter
specification

1.1Main configuration

af://n7
af://n12
af://n13

Version AgileX Pro

Chassis BUNKER

Robot arm Aubo i3/5

Robot arm claw DH AG 95

IPC x-7010(i7 16G 256SSD)

Visual sensor RealSense D435

LIDAR VLP 16

Display HD screen

Router B316 4G router

1.2 Main parts

BUNKER introduction

BUNKER is a versatile industrial application chassis. It's easily and flexibly operated with large
development space，adapting variety applications，independent suspension system，large
payload capability with suspension，excellent climbing ability including stairs and so on. It
can be used for development or solutions of special robots with exploration of inspection，
rescue and explosive clearing，special photography and special transportation functions.

af://n42
af://n45

Items Specification

Overall dimension 1000x750x360mm

Internal box dimension 600x300x230mm

Chassis height 90mm

Track width 150mm

Length of ground contact 520mm

Dead weight About 130kg

Payload 70kg

Power supply Lithium battery

Battery capacity 30AH

Supply voltage 48V

Climbing ability ≤35°

Speed 0~1.5m/s

Minimum turning radius Support situ turning

Obstacle crossing ability ≤ 170mm

Control mode Remote control

Remote controller 2.4G /≤1KM

Communication interface CAN

Aubo robot arm

Aubo series robots are a kind of industrial lightweight class collaborative robot which are
strictly selected by Agilex according to the research and education industry. It uses joint
modular design and system facing developers. Users can develop their own robot control
system based on the application program interfaces provided by Aubo platform. Also, Aubo
provide specialized programable operation interface and users can observe the robot
running status in real time，control setting or off-line simulation. It can greatly improve the
work efficiency of practical application. At the same time, we have done ROS adaptation to
support Moveit or other open source solutions according to research and education
industry.

af://n103

Robot arm model AUBO-i5

Weight 24 kg

Payload 5 kg

Extend 924 mm

Joint range -175° ~ +175°

Joint speed 1-3 joint：150°/s 4-6 joint：180°/s

Tool speed ≤2.8 m/s

Repeated positioning accuracy ± 0.02 mm

Floor space Ø172 mm

DOF 6

Standard control cabinet dimension（Length*Height*Width） 727mm x 623mm x 235mm

I/O power Control cabinet：24V 3A， Tool： 0V/12V/24V 0.8A

Communication protocol Ethernet、Modbus - RTU/TCP

Interface SDK（support C\C++\Lua\Python），support ROS and API

Programming On the 12.5inch touchscreen. AUBOPE graphical user interface.

Noise Low

IP level IP54

Power consumption About 200W during running

X-7010 IPC introduction

X-7010 is a modularized and high performance small IPC, customized for high calculation
ability and environment requirement of movable robots. It's using Intel platform and support
8/9th 35W high speed processor. It adopts large area aluminum fin of high efficiency heat
pipe and active/passive dual heat dissipation design of PWM fan. The strong body of
aluminum alloy made by mold ensures its long life and stable operation. It is suitable for
intelligent robot, unmanned driving, machine vision, smart city and other fields with high
computing requirements. Ubuntu 18.04 and ROS Melodic（Full Desktop) are preloaded on
the IPC with some common developing environment for robot development. User can use it
directly when just turn on.

Palm-sized compact ultra-small body；

Support Intel 8th desktop-level high performance CPU；

Equipped with heat pipe and intelligent fan for active and passive efficient heat
dissipation；

Support miniPCIE, NVME and variety of acceleration card expansion scheme；

Multi-channel ultra high speed special serial port, suitable for various radar
applications；

Multi-channel USB3.1 Gen2 and high-speed communication with dual gigabit
networks；

Solid moulded aluminum alloy body, in line with vehicle vibration and impact；

-20~60℃ working temperature；

af://n163

Vision sensor-RealSense D435

Binocular vision sensors have a wide range of application scenarios and requirements in
robot vision measurement, visual navigation and other robot industry directions. We have
selected the common vision sensors in the scientific research and education industry.
Equipped with a global image shutter and wide field of view, the Intel Photorealistic Depth
Camera D435 effectively captures and streams depth data of moving objects, thus providing
highly accurate depth perception for moving prototypes.

af://n184

 Model ModelRealsense D435

Basic characteristics Application scenarios Indoor/Outdoor

Measuring distance About 10 meters

Depth shutter type Global shutter /3um X 3um

Support IMU or not Yes

Depth camera Deepin Active infrared

FOV 86° x 57°（±3°）

Minimum depth distance 0.105m

Depth resolution 1280 x 720

Maximum measuring range About 10meter

Depth frame rate 90 fps

RGB Resolution 1280 x 800

FOV 69.4° × 42.5°（±3°）

Frame rate 30fps

Others Dimension 90mm x 25mm x 25mm

Interface type USB-C 3.1

LIDAR

The VLP-16 is one of Velodyne's smaller and more advanced lidar products. The VLP-16 is
more cost-effective than comparable sensors and retains some of Velodyne's key lidar
breakthrough features: real-time, 360°, THREE-DIMENSIONAL coordinates and range, and
calibrated reflectivity measurements.

The VLP-16 has a measuring range of up to 100 m, low power consumption (about 8 W), light
weight (about 830 g), small size (ø 103mm x 72mm), and dual return performance, making it
ideal for backpack-like measurements, drone mounts, and other mobile devices.

af://n256

Items Parameters

Maximum range 100m

Range accuracy ±3cm

Scanning rate
One single echo：300,000 points/sec， Dual echo：
600,000points/sec

Vertical Viewing
Angle

-15°~＋15°

Vertical angle
resolution

2°

Scan frequency 5Hz~20Hz

Safety class Class 1

Weight 830g

Power consumption 8W

Voltage 9V~18V

Temperature -10℃~＋60℃

Gripper

DH Robot AG 95 electric gripper has two adaptive parallel mechanical knuckle fingers. Each
knuckle finger consists of multiple connecting rod mechanisms and a spring, as shown in
FIG. 1.1. Knuckle fingers can make up to five points of contact with an object. Knuckle fingers
are driven by underdrive control, making the motor less than the total number of joints. This
design simplifies the control mode of grasping, so that the joint fingers can automatically
adapt to the shape of the object they grasp.

af://n298

Maximum recommended load 3-5kg

Finger opening and closing stroke（Programable） 0-95mm

Grasping force（Programable） 45-160N

Fastest finger opening and closing speed 190mm/s

Dead weight 1kg

Finger repeat positioning accuracy 0.03mm

Communication protocol TCP/IP, USB2.0, RS485, I/O, CAN2.0A, EtherCAT（Optional）

Working voltage 24V DC±10%

Working temperature 0~50℃

2 Hardware installation and electrical instructions

1. Hardware system composition

The tracked composite mobile robot project is composed of four parts as a whole, including the
chassis of the tracked mobile robot, the control box, the robot arm and its sensing unit and
interaction unit. The control cabinet mainly includes the IPC, router, voltage regulator module,
mechanical arm teaching lamp composition. The specific location is shown in the figure below.

af://n332
af://n333

2.Hardware topology connection

3 Simulation（Coming soon）

af://n337
af://n339
af://n342

4 Example of development

1.Pre-development preparation

1.Download the remote desktop tool

A remote desktop tool is installed in the IPC in the robot. Users need to install corresponding
tools on their laptops or computers, and remotely control the IPC on the robot through the router
on the robot.

（1）Downloading the Installation package

https://www.nomachine.com/download

Select your own laptop or the corresponding operating system to download.

（2）Usage

User name on IPC：bunker，Password：agx.

Router name：HAIWEI_B316_, Router's password and login password is the same：12345678，

Router ip：192.168.1.1 ，IPC ip：192.168.1.101

First, use your computer or laptop to find the wifi on the robot and input your password to
connect.

Open the downloaded remote connection tool Nomachine. Add a remote connection.

name：bunker，host：192.168.1.102

af://n342
af://n344
af://n345
https://www.nomachine.com/download

Input username：bunker password：agx，select to remember the password.

Then, you can connect it to the IPC on the robot.

2. IP setting

Set the network parameters of the robot arm：

Enter【Setting】->【System】->【Network】；
Choose the network card（Usually，there is only one option.）；
Set robot IP in “IP address”，The robot IP must be on the same network segment as the IPC.
That is the first three segments are the same with it. For example：192.168.1.100；
In “Mask” ，input：255.255.255.0；
In “Gateway”，input：192.168.1.1 . The first three segments for Gateway will need to be the
same as IP and the last segment is 1.
Click 【Save】
Restart the robot arm. This is very important！Because only the robot arm restarts，the
new network parameters will be activated.

af://n362

3. Use ar_track_alvar to achieve visual positioning and tracking

3.1 Function brief

This package is an open source AR tag tracking library Alvar's ROS PACKAGE . ar_track_alvar has 4
main functions：

（1）Generate AR tags with different sizes，resolutions，data/ID and encoding.

（2）Identify and track the pose of a single AR tag, optionally select integrating depth data from
depth cameras for better pose estimation.

（3）Identify and track combination poses composed of multiple tags. This allows for more stable
attitude estimation, robustness to occlusion, and tracking of multilateral objects.

（4）Automatically calculates the spatial relationships between tags in a bundle using camera
images so that the user does not have to manually measure and enter tag locations in an XML file
to use the bundle feature. (Currently not working.)

Alvar is newer and more advanced than ARToolkit, which has been the basis for several other ROS
AR tag packages. Alvar has adaptive threshold processing to handle various lighting conditions,
optical flow-based tracking for more stable attitude estimation, and an improved tag recognition
method that does not slow down significantly as the number of tags increases.

3.2 Instructions

(1) Generate tags

The following number indicates the ID number of the generated tags. You can generate tags
with different numbers as required.

Detailed parameter Settings are shown as follows：

$ source ~/catkint_workspace/devel/setup.bash

$ rosrun ar_track_alvar createMarker 0 -s 3.0

af://n380

Parameters Default value Function

x,y,z 0 The static position with camera fixed in the robot arm.

roll,pitch,yaw 0 Euler Angle representation of static attitude of camera fixed in robot arm.

r_w,r_x,r_y,r_z 0 The quaternion representation of the static attitude of the camera fixed in robot arm.

parent_link wrist3_Link The relative coordinate system of tf published by camera.

serial_no Null Serial number to activate the camera.

user_marker_size 3 Tag size（cm）

use_quaternion false Whether to use quaternion to represent attitude

camera_model realsense_d435 Camera model

camera_namespace camera Camera namespace

（2）Print the tags

Note when printing tags, pay attention to the size. The default size is 3x3 cm. If the print size is
different from the default size, please click:

~/your_workspace/src/open_manipulator_perceptions/open_manipulator_ar_markers/launch/agx
_ar_pose. launch to modify the tags size in the file.

Tag #0 is default on the object and tag #2 is on the object on the platform.

（3）Run the identification function

Use usb3.0 cable to connect the camera and computer，then run the below command：

The file structure for agx_ar_pose.launch is shown in below figure and the detailed parameters
are in the form below.

 <arg name="user_marker_size" default="3"/>

$source ~/catkin_workspace/devel/setup.bash

$roslaunch agx_aubo_bringup agx_ar_pose.launch

4.Use GMapping to build a map

4.1 Instruction

 The GMapping function package subscribs to the robot's depth information, IMU information
and odometry information, and completes the configuration of some necessary parameters to
create and output a probability-based two-dimensional grid map. The GMapping feature pack is
based on the open source SLAM algorithm of the OpenSLAM community.

4.2 Run

 After the map is completed，save it in the directory：~/catkin_workspace/src/agilexpro/maps

-f map：Here，map means the name our users built. The default loading map during
navigation is the one named map. If our users use another names when they save the
map，they will need to go to the directory：
~catkin_workspace/src/agilexpro/launch/navigation_4wd.launch ，and then change the
below map.yaml to their own map name.

5.Use move_base for navigation

5.1 Instruction

The move_base package provides an implementation of an action (see actionLib package) and
then it will attempt to implement it by using the mobile base if the target was given in the world.
The move_base node links global and local planners together to accomplish its global navigation
task. The move_base node also maintains two cost maps, one for the global planner and the
other for the local planner (see costmap_2d package), for navigation tasks.

5.2 Run

$ roslaunch agilexpro open_lidar.launch

$ roslaunch agilexpro gmapping.launch

$ roscd agilexpro/maps

$rosrun map_server map_saver -f map

<node name="map_server" pkg="map_server" type="map_server" args="$(find

agilexpro)/maps/map.yaml" output="screen">

af://n448
af://n458

6. Use smach library to achieve tasks status switched.

6.1 Instruction

SMACH explicitly describes all possible states and state transitions, which is useful when a robot is
performing some complex plans. This basically eliminates the conflict of putting different
modules together, allowing systems such as mobile robot control to do more interesting things.

6.2功能运⾏

7.Use moveit for robot arm route planning

7.1 Instruction

Use moveit's motion planer to make the route planning，collision detection and route execution.
Thus, when the target point is given, an optimal path can be calculated.

7.2 Run

$roslaunch agilexpro open_lidar.launch

$roslaunch agilexpro navigation.launch

$source ~/catkin_workspace/devel/setup.bash

$ rosrun agx_aubo_smach smach_demo.py

$ roslaunch agx_aubo_bringup setup_arm.launch

af://n464
af://n470

2. Run the function

1. Run robot arm

Open the power supply of the robot arm control cabinet to unlock the safety of each joint of
the arm. Long press the power button on the teaching display screen connected to the
control cabinet of the robot arm and click Save -> Start in the small window that pops up to
turn on the electrical switch of the robot arm.

In this launch file，we can change one parameter：robot_ip。The IP here is the default robot
arm's control cabinet IP：192.168.1.100

2. Start camera

Note that the camera and IPC need to be connected with USB3.0 cable before startup.

The below parameters can be changed in launch file：

$ roslaunch agx_aubo_bringup setup_arm.launch

<launch>

 <arg name="robot_ip" default="192.168.1.100" />

 <include file="$(find aubo_i�_moveit_config)/launch/moveit_planning_execution.launch">

 <arg name="robot_ip" value="$(arg robot_ip)"/>

 </include>

</launch>

$ roslaunch agx_aubo_bringup open_camera.launch

<arg name="camera_namespace" value="cam�"/>

 <arg name="serial_no" value="035422071503"/>

 <arg name="node_name" value="cam�"/>

<arg name="use_quaternion" value="true"/>

 <!--<arg name="roll" value="�"/>

 <arg name="pitch" value="-�.��"/>

af://n476
af://n477
af://n484

camera_namespace：Namespace of the camera node. It can be modified when starting multiple
cameras.

serial_no：Camera serial number S/N code. When starting multiple cameras, we can use the SN
to start the specify camera.

node_name：Generally the same as the namespace.

use_quaternion：true means it's using quaternions，false means it's using euler angle.

x,y,z：The position of the camera from the robot arm.

roll,pitch,yaw：Camera attitude euler Angle.

r_x,r_y,r_z,r_w：Camera attitude quaternion.

When launching the launch file, the image recognition node is also launched, which will update
the spatial coordinate information of objects and object placement platform in real time. The two
points of information can be obtained according to the following interface. The service name is
/pick_point. The service type is agx_pick_msg/AgxPickSrv, and the message format is as follows:

其中q为0时，返回物体的坐标信息；q为2时，返回物体摆放位置信息。

3. Start robot arm claw

The topic interface to control the claw is /gripper/ctrl, message type is
dh_gripper_msgs/GripperCtrl ，Message format is as follow：

 <arg name="yaw" value="-�.��"/>

 <arg name="x" value="�.��"/>

 <arg name="y" value="�.��"/>

 <arg name="z" value="�.�"/>-->

 <arg name="x" value="0.0446414171704"/>

 <arg name="y" value="0.053996778351"/>

 <arg name="z" value="0.0600140964856"/>

 <arg name="r_x" value="-0.000283027265062"/>

 <arg name="r_y" value="-0.0682970373998"/>

 <arg name="r_z" value="0.984025866108"/>

 <arg name="r_w" value="0.164403556559"/>

int�� item # �--bottle �--pick �--place

int�� handpose # The direction of claw grips the object �--front �--upside

int�� Prepose # Prepare clip point. 0-- Real position of object；

 # �--Forward or Shift upwards a position of the gripper according to the handpose

#Return

geometry_msgs/Point position

 float�� x

 float�� y

 float�� z

geometry_msgs/Quaternion orientation

 float�� x

 float�� y

 float�� z

 float�� w

$ roslaunch agx_aubo_bringup open_gripper.launch

af://n500

In the Agx_aubo_pick feature pack, there is a demo file that can input the finger position to
control the claw. The instructions are as follows:

4. Start agx_aubo_pick node

The node needs to acquire the taskid from the state machine to control the robot to perform
different tasks. The service interface of the task is /send_task and the service type is
agx_pick_msg/TaskCmd. The message format is as follows:

bool initialize # Whether init

float�� position # Distance between the fingers

float�� force # Force to grip the object

float�� speed # This parameter is invalid for two fingers claw.The clamping speed is positively

correlated with force

$ rosrun agx_aubo_pick control_gripper

$ roslaunch agx_aubo_bringup agx_aubo_bring.launch

int�� taskID

geometry_msgs/PoseStamped A_goal

 std_msgs/Header header

 uint�� seq

 time stamp

 string frame_id

 geometry_msgs/Pose pose

 geometry_msgs/Point position

 float�� x

 float�� y

 float�� z

 geometry_msgs/Quaternion orientation

 float�� x

 float�� y

 float�� z

 float�� w

geometry_msgs/PoseStamped B_goal

 std_msgs/Header header

 uint�� seq

 time stamp

 string frame_id

 geometry_msgs/Pose pose

 geometry_msgs/Point position

 float�� x

 float�� y

 float�� z

 geometry_msgs/Quaternion orientation

 float�� x

 float�� y

 float�� z

 float�� w

bool result

af://n507

5. Start smach states machine node

Switch of states are defined below:

The above is the whole system state transition logic, you can add the corresponding state
according to the need. Take the first state, where a "WAITFORORDER" state is defined with a
WaitFororder class, and transitions represent jump of the state. If the output of WaitFororder is
receive, it jumps to "PUBAGOAL", and if the output of WaitFororder is wait, it jumps to
"WaitFororder".

6. Start mapping

Use the remote control robot to build a map in the scene, and execute the following instructions
to save the map.

7. Start navigation

$ rosrun agx_aubo_smach smach_demo.py

smach.StateMachine.add('WAITFORORDER', WaitFororder(),

 transitions={'receive':'PUBAGOAL',

 'wait':'WAITFORORDER'})

smach.StateMachine.add('PUBAGOAL', PubAGoal(),

 transitions={'pubA':'WAITFORREACHGOAL'})

smach.StateMachine.add('WAITFORREACHGOAL', WaitForReachGoal(),

 transitions={'no':'WAITFORREACHGOAL',

'reachA':'PICK',

'reachB':'PLACE'})

smach.StateMachine.add('PICK', Pick(),

 transitions={'pick':'PUBBGOAL'})

smach.StateMachine.add('PUBBGOAL', PubBGoal(),

 transitions={'pubB':'WAITFORREACHGOAL'})

smach.StateMachine.add('PLACE', Place(),

 transitions={'place':'WAITFORORDER'})

$ roslaunch agilexpro open_lidar.launch

$ roslaunch agilexpro gmapping.launch

$ roscd agilexpro/maps

$rosrun map_server map_saver -f map

$ roslaunch agilexpro open_lidar.launch

$ roslaunch agilexpro navigation_�wd.launch

af://n511
af://n517
af://n521

When first start up, the program will default to the location where the mapping was started . You
will need to publish an approximate location and use remote controller to rotate the chassis to
calibrate. When the laser shape overlaps with the scene shape in the map, the correction is
complete.

The topic interface for navigation is：/move_base_simple/goal，Message type is ：
geometry_msgs/PoseStamped，Message format is as follow：

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

geometry_msgs/Pose pose

 geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

 geometry_msgs/Quaternion orientation

 float64 x

Feedback information can be obtained from the topic /move_base/result topic when it arrives
to a point. The message type is ：base_msgs/MoveBaseActionResult . The message format is as
follow：

When the robot arrives at the target point, the status is 3.

8. Record the coordinates of two points

In coordination with Step 7, move the trolley control to the specified position, such as in front of
the workpiece, about 1m away. As prompted, press Enter to record the location of the two points.

9. Mobile grab demonstration

Set two locations as a clip point and placing point in the scene. After recording the coordinate
positions of the two locations through Step 8, enable the following command：

 float64 y

 float64 z

 float64 w

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

actionlib_msgs/GoalStatus status

 uint8 PENDING=0

 uint8 ACTIVE=1

 uint8 PREEMPTED=2

 uint8 SUCCEEDED=3

 uint8 ABORTED=4

 uint8 REJECTED=5

 uint8 PREEMPTING=6

 uint8 RECALLING=7

 uint8 RECALLED=8

 uint8 LOST=9

 actionlib_msgs/GoalID goal_id

 time stamp

 string id

 uint8 status

 string text

move_base_msgs/MoveBaseResult result

$ roscd agx_aubo_pick/config

$ rosrun agx_aubo_pick record

$ roslaunch agx_aubo_bringup setup_arm.launch #Start robot arm

$ roslaunch agx_aubo_bringup open_camera.launch #Start camera

$ roslaunch agx_aubo_bringup open_gripper.launch #Start claw

$ roslaunch agx_aubo_bringup agx_aubo_bring.launch #Start moving claw node

$ rosrun agx_aubo_smach smach_demo.py #Start states machine

$ roslaunch agilexpro open_lidar.launch #Start LIDAR

$ roslaunch agilexpro navigation_�wd.launch #Start navigation

$ roslaunch agx_aubo_pick test.launch #Start execution

af://n531
af://n534

When the remote controller is switched to command control mode, the Cobot starts to navigate
to the first location to grab things.

10. In place grab and place demonstration

Label the grasping object and place it in a suitable position of the robot. Execute the following
commands to grab and place the demo：

3 FAQ and troubleshooting

4 Figures and figure legends

$ roslaunch agx_aubo_bringup set_setup_arm.launch

$ roslaunch agx_aubo_bringup open_camera.launch

$ roslaunch agx_aubo_bringup open_gripper.launch

$ rosrun agx_aubo_pick demo_pick #Grab objects

$ rosrun agx_aubo_pick demo_place #Place objects

af://n539
af://n543
af://n546
af://n548

5 Others
1. [User manual and supporting instruction manual of Aubo robot arm]:
2. VLP16 LIDAR user manual.

af://n548

	User manual for Agilex Cobot kit
	0 Introduction
	1 Main configuration list and parameter specification
	1.1Main configuration
	1.2 Main parts

	2 Hardware installation and electrical instructions
	1. Hardware system composition
	2.Hardware topology connection

	3 Simulation（Coming soon）
	4 Example of development
	1.Pre-development preparation
	1.Download the remote desktop tool
	2. IP setting
	3. Use ar_track_alvar to achieve visual positioning and tracking
	4.Use GMapping to build a map
	5.Use move_base for navigation
	6. Use smach library to achieve tasks status switched.
	7.Use moveit for robot arm route planning

	2. Run the function
	1. Run robot arm
	2. Start camera
	3. Start robot arm claw
	4. Start agx_aubo_pick node
	5. Start smach states machine node
	6. Start mapping
	7. Start navigation
	8. Record the coordinates of two points
	9. Mobile grab demonstration
	10. In place grab and place demonstration

	3 FAQ and troubleshooting
	4 Figures and figure legends
	5 Others

