AgileX Robotics Autoware Open Sourse Autonomous Kit

1. Basic hardware configuration list

a) Computing unit and accessories

No.	Accessories	Model	Quantity
1	Computing unit	ASUS VC66 (i7- 9700 16G 512G M.2 NVME + Solid	1
2	Computing power adapter	24v to 19V (10a)	1
3	A set of mouse and keyboard		1
4	14-inch wireless screen		

b) Perception equipment and accessories

No.	Accessories	Model	Quantity
1	Multi line lidar	Robosense RS16	1
2	24V VRM	24v to 19V (10a)	

c) Integrated navigation and accessories (optional)

No.	Accessories	Model	Quantity
1	Integrated	Nouton M2	1
	navigation	Newton Mz	Ĩ
2	RF connecter		2
3	Data/Power	1	
	connecter		I
4	GPS aerial		2
5	Base of the aerial		2

d) Chassis platform

No.	Accessories	Model	Quantity
1	Chassis mobile	HUNTER/HUNTER 2	1

	platform		
2	Remote Controller	FS i6s	1
3	USB to CAN	CAN analyzer	1

Note: Due to the different network standard in different countries and regions, unfortunately the router is not able to provide within the accessories list, users can purchase the router based on the requirement by themselves.

2. Basic function of Autoware development kit and description

of ODD

1) Basic function of development kit

- Introduction to the wire control of the chassis
- Control the chassis by ROS
- View the lidar 3D point cloud data based on Robosense RS16
- Use Autoware to build 3D point cloud map, and view 3D point cloud data
- Use Autoware to record path points
- Use Autoware to follow path points
- Use Autoware to follow path points (obstacle avoidance)
- Use hybrid A* for free navigation (static detour)
- Use Autoware for local part path planning (set up multiple lane changes)
- Edit vector maps (lane lines, zebra crossings, curbs, etc.)
- Use Autoware for global path planning (combined with vector map)

ltem	Content
Application conditions	Indoor and outdoor environment
Applicable road situation	Clear Roads and limited situation(security, logistics,
	autonomous driving)
Weather	Regular weather such as sunny, cloudy, and foggy
	(visibility above 100 meters)
Pavement requirements	1. Smooth and relative clean roads (asphalt roads,
	cement roads, etc.), excluding construction roads with
	many protrusions or depressions or roads with many
	scattered objects;
	2. Wet environment (the depth of water should not
	exceed the height of the chassis bottom for 5cm, not
	putting in the water);
	3. Less than 10° slope is recommended when climbing
	up (it can be increased appropriately according to the
	different chassis drive capacity);

2) Description of ODD

Valid period	The period which there is enough sunshine during the	
	day and high visibility at night	
Speed	≤10km/h	
Working humidity	0~80%	

3. Basic Introduction:

i. Hardware Introduction

1) Chassis platform

HUNTER1.0

HUNTER1.0 is a programmable UGV with Ackermann steering model which its chassis is based on Ackermann steering theory. Therefore, it is similar to normal cars and high performances on cement and asphalt roads . Compared with the fourwheel differential chassis, HUNTER chassis has higher performances for load carrying and speed, also it causes less abrasion for the structure and tires. Although HUNTER is not designed for all kinds of terrains, it is equipped with a swing arm suspension which is able to go through some normal obstacles such as speed bumps, etc. Additional extension such as stereo camera, laser lidar, GPS, IMU and robotic manipulator can be installed on HUNTER optionally. HUNTER is mostly used for autonomous driving education ,research, indoor and outdoor security patrolling, environment sensing, general logistics and transportation.

Parameter Types	Items	Values	
	$L \times W \times H$ (mm)	980 X 718 X 330	
	Wheelbase (mm)	650	
	Front/rear wheel base (mm)	578	
	Weight of vehicle body (kg)	45~50	
	Battery type	Lithium battery 24V 20aH	
Mechanical	Power drive motor	DC brushless 2 X 200W	
specifications	Steering drive motor	DC brushless 200W	
	Reduction gearbox	1:30	
	Drive type	Rear wheel drive	
	Steering	Front wheel Ackermann	
	Maximum steering angle	30°	
	Steering accuracy	0.5°	
	No-load highest speed (m/s)	1.5	
Motion	Minimum turning radius (mm)	1700	
IVIOUOII	Maximum climbing capacity	20°	
	Minimum ground clearance (mm)	105	
		Remote control	
Control	Control mode	Control command mode	
Control	RC transmitter	2.4G/extreme distance 1km	
	Communication interface	CAN / RS232	

HUNTER 2.0

HUNTER2.0 was born for low-speed self-driving which based on front-wheel Ackerman steering theory and swing arm suspension, is able to pass different kind of obstacles, secondary development interfaces and standard installation components are making HUNTER2.0 the best solution for mobile robot selfdriving program. Compared with HUNTER1.0, the upgraded version HUNTER2.0 has gradient parking function which achieved long-term ramp parking. If the vehicle is powered off or malfunctions while driving on a sloped road, the tires will be locked, making it stable and reliable. HUNTER2.0 has lithium iron phosphate battery and the capacities can be customized based on the requirement. The speed also can be customized up to 10km/h, meet the requirements of different autonomous driving scenarios.

Parameter Types	ltems	Values
	$L \times W \times H$ (mm)	980 × 745 × 380
	Wheelbase (mm)	650
	Front/rear wheel base (mm)	605
	Weight of chassis body (kg)	65/70
	Battery	Lithium battery 24V 30Ah/60Ah
Mechanical specifications	Power drive motor	DC brushless 2 ×400W
	Steering drive motor	DC brushless 200W
	Reduction gearbox	1:40
	Drive system form	Power off electromagnetic band type brake
	Steering	Front wheel Ackermann
	Maximum steering angle	33°
	Steering accuracy	0.5°
	No- load MAX speed (m/s)	1.5
Motion	Minimum turning radius (mm)	1.6
	Maximum climbing capacity	10°
	Minimum ground clearance (mm)	105 (Angle 30°)
Control	Control mode	Remote control Control command mode
	RC transmitter	2.4G/extreme distance 1km
	System interface	CAN

2) Robosense Introduction

RS-LiDAR-16 uses 16 laser heads to simultaneously emit high-frequency laser beams to continuously scan the external environment. Because it has high-speed digital signal processing technology and ranging algorithms to acquire threedimensional space point cloud data and object reflectivity rate, so that the machine is able to observe the surrounding and highly capable for location navigation and obstacles avoidance.

Figure 2 Robosense lidar

Sensor	•	TOF method ranging 16 channel
	•	Range: 20cm-150m (Target reflectivity rate 20%)

	Precision:+/-2cm (Typical value)
	 Visual angle (Vertical): ±15° (Total 30°)
	• Angular resolution: (Vertical): 2°
	• Visual angle (Horizontal) : 360°
	• Angular resolution (Horizontal/azimuth): 0.09° (5Hz) to 0.36°
	(20Hz)
	• Speed: 300/600/1200rpm (5/10/20Hz)
Laser	Class 1
	Wavelength: 905nm
	Laser launch angle: Horizontal 3mrad, Vertical 1.2mrad
Output	• 320kBytes/s
	• 100M Internet
	UDP include
	Distance information
	Rotation angle information
	Calibrated reflectivity information
	Synchronized time label (Resolution ratio 1us)
Mechanical/electronic	 Power consumption: 9w (Typical value)
operation	• Operational voltage: 12VDC (With interface box, stable voltage)
	• Size: Diameter 109mm * Height 82.7mm
	Protective safety level: IP67
	 Operational temperature range: -10°C~+60°C

3) Introduction of computing unit

The computing unit uses intel i7-9700 processor which main frequency is eight-

core and eight-wire 3Ghz , up to 32 GB memory and two hard disks.

ii. System Architecture

1) Introduction of Autoware system

Autoware is the first open source integration software for autonomous driving vehicle in the world. Autoware is mainly suitable for cities, but also applicable to highway and non-municipal roads . At the same time, there are development and application resources on the Autoware open source software which is built on ROS operating system. The first official version was released by the Nagoya University research team with the leadership of Prof. Shinpei Kato in August 2015. In late December 2015, in order to maintain Autoware and apply it to real self-driving cars, Prof. Shinpei Kato founded Tier IV . As the time goes on, Autoware has became an open source project acknowledged by the public. Autoware is also the first "all in one" open source software for autonomous driving technology in the world.

Autoware contains the required function modules. In this manual, there are only general concept for function modules, customers are welcome to develop detail research by their own.

Perception

Autoware support camera, LiDAR, IMU and GPS as the main sensor. From the technical view, if it is not verified, as long as the sensor driver software is provided, almost all kinds of cameras, LiDAR, IMU and GPS can be applicable in Autoware.

Computing/Perception

The perception ability of Autoware is consisted of localization, perception and prediction. Though combining 3D maps with SLAM algorithms of GNSS and IMU sensor to achieve localization. Perception contains sensor fusion algorithm and deep neural networks camera and Lidar. Prediction is based on the results of localization and perception.

Localization

lidar_localizer use scan data from LiDAR and pre-install 3D map information to calculate self-driving car position in global coordinate (x, y, z, roll, pitch, yaw). We suggest to use the NDT algorithm to match the LiDAR scan with the 3D map, and the ICP algorithm is also applicable.

gnss_localizer converts the NMEA messages from GNSS receiver to the (x, y, z, roll, pitch, yaw) position. This result can be used as the location of the autonomous vehicle independently, or it can be used to initialize and supplement of the lidar localizer result.

Generally, dead_reckoner uses IMU sensors to predict the next frame position of the autonomous vehicle, and interpolates the results of lidar_localizer and gnss localizer.

Perception

Lidar_detector acquires the point cloud data from 3D laser scanner and it has

object detecting function which based on LiDAR. The Euclidean clustering algorithm supports the basic performance which is able to find the clusters of LiDAR scans (point clouds) above the ground. In order to classify clusters, it support the algorithm base on DNN such as VoxelNet and LMNet. vision detector acquires image data from the camera and it has object detection function which is based on image. Main algorithm includes R-CNN, SSD and Yolo which are designed to single DNN executing to achieve actual-time performance. and support various different detection types, such as cars and passengers. vision tracker is able to track the results of vision detector. This algorithm is based on Beyond Pixels. Project the tracking result on the image platform, and combine it with the result of lidar detector in 3D space by using Fusion tools. fusion_detector requires the point cloud data from laser scanner and image data from camera, and achieve accurate target detection in 3D space. The position of laser scanner and camera must be calibrated in advance. The current

implementation is based on the MV3D algorithm, this network has less extensibility compared with the original algorithm.

fusion_tools are able to combine the result of lidar_detector and vision_tracker. The information identified by vision_detector is add to the point cloud cluster detected by lidar detector.

object_tracker is the motion of the object detected and recognized by the above procedure. The tracking results can be used for object behavior prediction in the future and object velocity evaluation. The tracking algorithm is based on a Kalman filter. Another variant also supports particle filters.

Prediction

object_predictor uses the results of the above object tracking to predict the future route of moving objects (such as cars and passengers).

collision_predictor use the results of object_predictor to predict whether the autonomous car is going to collide with any kinds of object in motion. In addition to the results of object tracking, the information of route trajectory and speed of the autonomous vehicle is also required as input data.

cutin_predictor use the same information as collision_predictor did to predict whether there is any neighbour car cut in front of the autonomous vehicle.x

Computing/Decision

Autoware's decision-making module contains perception and planning modules. According to the result of perception, the driving behavior of Autoware is represented by the finite state machine, so that the appropriate planning function can be selected. The current decision-making method is based on the rule system.

Computing/Planning

The last module of Autoware is the planning module which function is making plans for global tasks and local (at the time) movement based on the results of the perception and decision-making modules. Generally, the global task is determined when the autonomous vehicle is started or restarted, and the local motion is updated based on the state changing. For example, if the state of Autoware is set to "Stop", the plan is setting the speed of the autonomous vehicle to zero in front of an object with a safety margin or stop at the stop line. Another example is that if the state of the automatic software is set to "Avoid", the trajectory of the autonomous vehicle is planned to pass the obstacle. The main software packages included the planning module as follows.

Planning

•route_planner searches for the global route to the destination. The route is represented by a set of intersections in the network.

·lane_planner determines to use which lanes and the route generated by route_planner. The lane is represented by a set of road signs and multiple road signs (each road sign is corresponding to a lane) generated by this package.
·waypoint_planner can be used to generate a set of guide points to the destination. The difference between this package and lane_planner is that it generates a single way point instead of an array of way points.

•waypoint_maker is a practical tool for saving and loading manual way points. If it is needed to save way points to a specific file, please drive the vehicle manually after activating localization, Autoware will record the way points and speed information of the driving route. You can download the recorded way points from the specific file later, so that the motion planning module is able to follow the path.

Motion

·velocity_planner get updates from lane_planner, waypoints_planner or waypoints_maker

Speed plans for way points is slow/accelerate vehicles for different road circumstances, such as stop lines and traffic lights. Please note that the speed information embedded in a given waypoint is static, and the package will update the speed plan based on the driving circumstances.

astar_planner executes the hybrid A* search algorithm, this algorithm generates the path from current position to specific position. The software package can be used to avoid obstacles and make sudden turns on given way points as well as route selection in free spaces such as parking lots.

adas_lattice_planner execute the state lattices planning algorithm. The algorithm is based on a spline curve, a predefined parameter table and ADAS mapping (also known as vector mapping) information generates multiple feasible trajectories before the current position. The software package is used for obstacle avoidance and lane changing.

waypoint_follower executes the Pure Pursuit algorithm. The algorithm generates a set of twisted velocities and angular velocities (or positive angles) to move the autonomous vehicle to a target waypoint on a given waypoint in circular motion. This package should be used in combination with velocity_planner, astar_planner and/or adas_lattice_planner. The released set of twisted speed and angular speed (or only angle) information will be acquired by the vehicle controller or wire control interface. Finally, the autonomous vehicle will be under controlled automatically.

2) Autoware low speed autonomous driving kit structure

Figure 5 Vehicle platform chassis system data flow diagram

iii. Basic introduction of software

1) Basic introduction of ROS

ROS is Open Source robot operating system which based on Ubuntu system. It has highly flexible software architecture for robot software programming. This structure connects each node (independent program) in ROS, each node communicates based on TCP\IP, and the nodes are connected with each other through different themes. This structure includes a large number of tool software, code base and protocol which is aimed to simplify the difficulties and complexity of the process of creating complex and robust robot behaviors on the robot platform. It helps avoiding the re-creating wheels problem the which making the development easier and faster, skip the repetitive work.

ROS is an open source operating system for robot, it has all the functions that operating system do, including hardware abstraction, low-level device control, implementation of commonly used functionality,message-passing between processes, and package management. It also provides the services and library function for acquiring, editing and translating, complying and running code across computers. At the same time, ROS is also compatible with many third-party libraries including opencv (computer vision), PCL (point cloud library) and so on. The interface of ROS is also very diversity which is compatible with most sensors such as lidar, GPS, and ultrasonic on the market. Users can add various sensor devices to their robots based on their requirement. And ROS WIKI provides a large number of packages which developed by users , these open source packages can meet user's professional project requirements. The main function of ROS is providing services designed for code reusing support for robot researching and development. ROS is a distributed process (node) frame, these process are encapsulated in the procedures packages and function that are easy to share and release. ROS also supports a joint system similar to code repository which can achieve project collaboration and released. This design can make the development and implementation of a project completely independent from the file system to the user interface (not restricted by ROS). At the same time, all projects can be integrated by ROS basic tools. In conclusion, ROS aims to make robot development become easier, faster and more interesting.

2) Basic introduction of Autoware

Autoware is the first integration open source software for autonomous driving vehicle in the world. Mostly, Autoware is suitable for cities, but highways, intersection areas and geo-fence are also applicable. All rights for Autoware's code base are reserved by is the Apache 2 license. For safety reasons, we provide a simulation environment based on ROSBAG for those who do not have self-driving technology.

(b) System software and hardware environment construction

	-		
Accessories list	Table of Accessories list	Quantity of	Remarks
		components	
Computing unit	Computing unit	1	
	Mouse and keyboard	1	
Multi line lidar	Multi line lidar sensor	1	
	Sensor controller	1	
	Liquid crystal display	1	
Liquid crystal	screen		
display module	mini-hdmi to hdmi wire	1	
	usb to type-c wire	1	
usb-to-can	usb-to-can module	1	
Power module	24v to 12v	1	
	24v to 19v	1	
	HUNTER mobile chassis	1	
	Aviation plug (with line)	1	
Chassis module	Vehicle controller	1	

1. Hardware installation

a) Accessories list

Note: Due to the different network standard in different countries and regions, unfortunately the router is not able to provide within the accessories list, users can purchase the router based on the requirement by themselves.

b) Accessories electrical description

Accessories name	Electrical characteristics of	Remarks
	accessories	

Computing unit	DC 19v@6.5a	
Multi line lidar	DC 12v@0.8a (Typical	
	values 9w)	
Liquid crystal display	DC 5v	
screen		
4G Router	DC 12v@0.8a	

c) Power connection topographic diagram

The vehicle contains two voltage conversion modules, all of which are powered by the battery of the chassis, and both are from the aviation plug on the top of the hunter. The voltage is 21.5v~29.2v, and it will change with the external movement during use. However, the sensor module mentioned above mainly contains two electrical characteristics, one is 12v and the other is 19v, so two voltage stabilizing modules are used in the chassis.

d) Data flow diagram

The Autoware Autonomous Driving Education Development Kit contains the front-end perception, the intermediate data transmission and processing calculation, and the rear-end actuator. The front-end perception is consist of multi line lidar sensor and rtk-gps (adapting). In order to facilitate customers to develop new sensors, a 4G router is included in the accessories to facilitate customers to develop other sensor units. The data processing unit in the middle uses a intel i7 9700 processor, and it is equipped with a screen to debugging and use. The data flow diagram is shown in the following figure.

e) Installation

2. Software installation

\$ sudo apt-get update

ROS Installation, refer to: http://wiki.ros.org/kinetic/Installation/Ubuntu

```
$ sudo sh -c '. /etc/lsb-release && echo "deb
http://mirrors.ustc.edu.cn/ros/ubuntu/ `lsb_release -cs` main" >
/etc/apt/sources.list.d/ros-latest.list'
```

\$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' -recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

```
$ sudo apt-get install ros-kinetic-desktop-full
$ apt-cache search ros-kinetic
$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
$ source ~/.bashrc
$ sudo apt install python-rosdep python-rosinstall python-
rosinstall-generator python-wstool build-essential
$ sudo apt install python-rosdep
$ sudo rosdep init
```

Normally, there would be an error, then it is needed to modify the hosts file. Refer to: https://blog.csdn.net/u013468614/article/details/102917569 #Open hosts file sudo gedit /etc/hosts

#Add to the end of the file 151.101.84.133 raw.githubusercontent.com

#Exit after saving and then try again

\$ sudo rosdep init
\$ rosdep update

Create workspace:

```
$ mkdir -p ~/catkin_ws/src
$ cd catkin_ws/src/
$ catkin_init_workspace
$ cd ..
$ catkin_make
$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
```

Restart the computer.

Installation of Can analyzer rely: Copy libcontrolcan.so to /usr/local/lib \$ sudo cp libcontrolcan.so /usr/local/lib Can authorization Configuration : \$ sudo gedit /etc/udev/rules.d/99-mysub.rules

Add contents:

ACTION = = "add", SUBSYSTEMS = = "usb", ATTRS{idVendor} = = "04d8", ATTRS{idProduct} = = "0053", GROUP = "users", MODE = "0777"

```
When the configuration is completed
$ sudo ldconfig
Compile the code:
Copy hunter_robot in the src file folder to workspace
$ cd ~/catkin_ws/
$ catkin_make
Install qt: (Use 5.6.2 version here)
qt download page: https://www.qt.io/download
Go to the directory with the qt installation package:
$ sudo chmod +x qt-opensource-linux-x64-5.6.2.run
$ ./qt-opensource-linux-x64-5.6.2.run
```

Keep clicking Next until the installation is completed.

Install opencv: Install 3.4.2 version here, interlink: https://opencv.org/releases/page/3/ Refer to: https://blog.csdn.net/u010632165/article/details/81387700

Unzip opency, and then enter the opency folder

```
$ sudo mkdir build
$ cd build
$ cmake ../
$ make -j8
$ sudo make install
```

Install Autoware, use 1.8.0 version here, source code: https://gitlab.com/Autowarefoundation/Autoware.ai/Autoware/-/tree/1.8.0

If there is any problem with the installation process, refer to: https://blog.csdn.net/yourgreatfather/article/details/86504547

```
Unzip Autoware
$ cd Autoware-1.8.0/ros/
One-click installation of all relies:
$ rosdep install -y --from-paths src --ignore-src --rosdistro
$ROS_DISTRO
Compile
$ ./catkin_make_release
```

Start Autoware:

```
$ cd Autoware-1.8.0/ros/
$ ./run
```

After start up successfully, start up interface is shown as follow:

🔕 🖨 🗊 Ru	ntime M	anager								
Quick Start	Setup	Мар	Sensing	Computing	Interface	Database	Simulation	Status	Topics	State
Map								Ref		
Tripp										
Concin								Dof		
Sensin	y (Kei	1	
Leading								Def		
Localizat	lon							Rer	1	
Detecti	on							Ref	J	
-										
Mission Pla	anning							Ref		
Motion Pla	nning							Ref		
Android	Tablet		Oculus Ri	ft Ve	ehicle Gatew	ay Re	emote Control		cloud D	ata
Auto Pi	lot						ROSBAG	RVia		RQT
0.0%	0.0%	0.0)% 0	.0% 60.	0% 0.0	9.1	% 0.0%	python top (9.1	(54.5 %CP (%CPU)	U)
								/sbin/ir [kthrea	it (0.0 %CI dd] (0.0 %	PU) CPU)
								2C	GB/15GE	3(14%)
CPU0	CPU1	CP	U2 C	PU3 CP	U4 CP	US CPI	U6 CPU7	7 Mem	ory	
w Auto	oWa	Ire	III PSSI	5001-11-5						

3. Vehicle wire control

With the technological development of automotive electronic and the integration of automotive systems, people can drive cars by means of electronic instead of traditional mechanical mechanisms to transmit control signals. This electronic technology is X-By-Wire. "By-Wire" can be called electronic wire control, and "X" represents various systems in the car. Such as steering-by-wire, Brake-By-Wire, etc.

Wire controlling is the basis of automatic driving. The basic requirement of wire controlling is changing all the control behaviors of the vehicle from mechanical to electronic control, from the original analog signal input to the digital signal input. Agilex Robotics chassis HUNTER provides services includes steer by wire, throttle by

wire, and brake by wire. Besides the basic wire control function, our communication interface also provides some feedback information from chassis.

The CAN communication standard in HUNTER products uses the CAN2.0B standard, baud rate is 500K, message format is Motorola format. The linear velocity and the angular velocity of rotation of the chassis can be controlled through the external CAN bus interface. The information about current motion status and HUNTER chassis status would be given by HUNTER.

The protocol includes system status feedback frame, motion control feedback frame, and control frame. The content of the protocol as follows:

The system status feedback command includes the current car body status feedback, control mode status feedback, battery voltage feedback, and fault feedback. The protocol content is shown in Table 3.1.

Command	System Status Feedback Command							
Name								
Sending node	Receiving node	ID	Cycle(ms)	Receive-time				
				out(ms)				
Steer-by-wire	Decision-making	0×151	20ms	None				
chassis	control unit							
Data length	0×08							
Position	Function	Data type	Description					
			0×00 System in	normal				
	Current status		condition					
byte[0]	of vehicle body	unsigned int8	0×01 Emergence	zy stop				
			mode(not enab	le)				
			0×01 System ex	ception				
byte[1]	Mode control	unsigned int8	0×00 Remote c	ontrol mode				
			0×01 Command	l control mode				
byte[2]	Battery voltage							
	higher 8 bits	unsigned	Actual voltage >	(10 (with an				
byte[3]	Battery voltage	int16	accuracy of 0.1	√)				
	lower 8 bits							
	Failure							
byte[4]	information							
	higher 8 bits	unsigned	See notes for de	etails 【**】				
	Failure	int16						
byte[5]	information							
	lower 8 bits							
	Count parity bit	unsigned int8	0-255 counting	loops,which will				
byte[6]	(count)		be added while	single				
			command has b	een sent				
byte[7]	Parity bit	unsigned int8	Parity bit					
	(checksum)							

		Description of Failure Information
Byte	Bit	Meaning
byte [4]	bit [0]	Check error of CAN communication control command (0: No
		failure 1: Failure)
	bit [1]	Abnormal condition of front wheel steering encoder (0: No
		failure 1: Failure)
	bit [2]	RC transmitter disconnection protection (0: No failure 1:
		Failure)[1]
	bit [3]	Reserved, default 0
	bit [4]	Reserved, default 0
	bit [5]	Reserved, default 0
	bit [6]	Reserved, default 0
	bit [7]	Reserved, default 0
byte [5]	bit [0]	Battery under-voltage failure (0: No failure 1: Failure)
	bit [1]	Battery over-voltage failure (0: No failure 1: Failure)
	bit [2]	No.1 motor communication failure (0: No failure 1: Failure)
	bit [3]	No.2 motor communication failure (0: No failure 1: Failure)
	bit [4]	No.3 motor communication failure (0: No failure 1: Failure)
	bit [5]	No.4 motor communication failure (0: No failure 1: Failure)
	bit [6]	Motor drive over-temperature failure (0: No failure 1:
		Failure)
	bit [7]	Motor over-current failure (0: No failure 1: Failure)

The command of movement control feedback frame includes the feedback of current linear speed and angular speed of moving vehicle body. For the detailed content of protocol, please refer to Table 3.2.

Command	Movement control Feedback Command						
Name							
Sending node	Receiving node	ID	Cycle(ms)	Receive-time			
				out(ms)			
Steer-by-wire	Decision-making	0×131	20ms	None			
chassis	control unit						
Data length	0×08						
Position	Function	Data type	Description				
byte[0]	Moving speed						
	higher 8 bits	signed int16	Actual speed X 100 (with an				
byte[1]	Moving speed		accuracy of 0.00	D1rad)			
	lower 8 bits						
byte[2]	Internal steering						
	angle higher 8						
	bits	signed int16	Actual speed X	100 (with an			
byte[3]	Internal steering		accuracy of 0.00	D1rad)			
	angle lower 8						
	bits						

byte[4]	Reserved	-	0×00
byte[5]	Reserved	-	0×00
	Count parity bit		0-255 counting loops, which will
byte[6]	(count)	unsigned int8	be added once every command
			sent
byte[7]	Parity bit	unsigned int8	Parity bit
	(checksum)		

The control frame includes mode controlling, failure clearing command, control openness of linear speed, control openness of internal steering angle and sum check. For more protocol detail, please refer to Table 3.3.

Command		Control co	ommand	
Name				
Sending node	Receiving node	ID	Cycle(ms)	Receive-time out(ms)
Decision-making control unit	Chassis node	0×130	20ms	None
Data length	0×08			
Position	Function	Data type	Description	
byte[0]	Control mode	unsigned int8	0×00 Remote c 0×01 Comman mode[1]	ontrol mode d control
byte[1]	Failure clearing command	unsigned int8	See Note 2 for	details*
byte[2]	Linear speed percentage	signed int8	Maximum spee value range(-1,	ed 1.50m/s, 100)
byte[3]	Internal steering angle percentage	signed int8	Maximum inter angle (-25°, 25 range(-100,100	nal steering 5°), value
byte[4]	Reserved	-	0×00	
byte[5]	Reserved	-	0×00	
byte[6]	Count parity bit (count)	unsigned int8	0-255 counting will be added o command sent	loops,which nce every
byte[7]	Parity bit (checksum)	unsigned int8	Parity bit	

(c) Basic function demonstration and development tutorial

1) Early setting

lidar configuration, RS-LiDAR-16 as sample . Since Autoware is adapted to velodyne's lidar, it is necessary to modify the code of RS-LiDAR to have better adaption to Autoware.

Copy the ros_rslidar package to the workspace, refer to: https://www.ncnynl.com/archives/201807/2552.html

There are two modifications. One is modifying the frame_id of the lidar and find the 27th line of code in ros_rslidar/rslidar_driver/src/rsdriver.cpp: private_nh.param("frame_id", config_.frame_id, std::string("rslidar")); change to: private_nh.param("frame_id", config_.frame_id, std::string("velodyne"));

The other is modifying the output topic of lidar, find the 23rd line of code in ros_rslidar/rslidar_pointcloud/src/convert.cc: private_nh.param("output_points_topic", output_points_topic, std::string("rslidar_points")); change into: private_nh.param("output_points_topic", output_points_topic, std::string("points_raw"));

After saving, enter the workspace and compile:

```
$ cd ~/catkin_ws
$ catkin make
```

Change lidar IP, click system setting \rightarrow Network \rightarrow Cable \rightarrow Option \rightarrow IPv4 setting

😑 🗇 🗉 正在編	扁辑 有线连接	ŧ 1			
连接名称(N):	有线连接 1				
常规 以太网	802.1X 安全	性 DCB	IPv4 设置	IPv6 设置	
方法(M):	手动				•
地址					
地址		子网掩码		网关	增加(A)
192.168.1.1	02	24			删除(D)
DNS 服务器:	:				
搜索域(E):					
DHCP 客户单	HID:				
□ 需要 IPv4	4地址完成这	个连接			
					路由(R)
				取消	(C) 保存(S)

Set the IP to 192.168.1.102, restart computer after the setting is completed.

2) Vehicle status feedback, control the vehicle through the keyboard

Course 1: Start the chassis and control

```
$ roscore
```

\$ rosrun hunter_robot hunter_robot

Control by the keyboard:

Install the package teleop_twist_keyboard, refer to: https://blog.csdn.net/allians/article/details/80583652

Download \$ sudo apt-get install ros-kinetic-teleop-twist-keyboard Start \$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py The speed should not be too fast, reduce the speed to around 0.2m/s by pressing the Z key on the keyboard. And then the buttons u | o j k | m are for controlling the chassis.

Controlling by the handle: Install the package joy_node, refer to: https://blog.csdn.net/han_l/article/details/77885238

```
Download

$ sudo apt-get install ros-kinetic-joy

Start

$ roslaunch hunter_robot joy.launch

Now you can control the chassis by Bluetooth handle.
```

The Bluetooth handle module is BETOP (Taobao 200 yuan), it is better to put a picture of the handle.

2), 3D laser point cloud data acquirement

There are two ways to create maps which are online map creation and offline map creation. We use offline map creation mostly, because the result of online map creation is a bit disappointed.

Start Autoware:

```
$ cd Autoware-1.8.0/ros/
$ ./run
```

```
Start lidar:
$ roslaunch rslidar_pointcloud rs_lidar_16.launch
```

😕 🖨 🗐 🛛 Rur	ntime M	anager								
Quick Start	Setup	Мар	Sensing	Computing	Interface	Database	Simulation	Status	Topics	State
r										
Map								Ref		
Sensing								Def		
Sensing								Kei		
Leveliesti								Def		
Localizati	ion							Rei		
Detectio	n							Ref		
Mission Pla	nning							Ref		
Motion Plar	nning							Ref		
									/	
Android	Tablet		Oculus Ri	ift V	ehicle Gatew	ay Re	emote Control		Cloud D	ata
Auto Pilo	ot						ROSBAG	RVi	z 🗌 🗌	RQT
90.9%	9.1%	0.0	0% 0	.0% 0.0	0% 8.3	3% 0. 0	0.0%	/sbin/ir [kthrea	nit (0.0 %Cl dd] (0.0 %	PU) CPU)
								[kwork [kwork	er/0:0H] (0 er/u16:0] (.0 %CPU) 0.0 %CPU)
								[mm_p 1	GB/15G	(0.0 %CPU) B(9%)
CPU0	CPU1	CP	U2 C	PU3 CP	U4 CP	U5 CP	U6 CPU7	Mem	огу	
🗠 Auto	oWa	re								

Click the ROSBAGd on Autoware interface

Select the lidar data/points_raw which need to be recorded, click Start to start recording

Controlling the vehicle to run a round in an unknown environment, try to move as slow as possible, remember the location of the starting point which is needed use for tracking along the trail. After recording is completed, click Stop to stop recording, and put the recorded package in a folder.

Enter the Simulation module of Autoware, select the package that just recorded, click Play and click Pause to pause immediately.

😣 🖲 🗊 Ru	ntime Ma	anager		80			5.5			
Quick Start	Setup	Map Sensi	ng Computi	ng Inte	rface Dat	abase Si	mulation	Status	Topics	State
/home/a/t Rate:	an/2020- Start	04-18-16-48-40 Time (s): 0	En mo	ter Sim odule	ulation	/				Ref
Play	Stop	Pause			Plaving	0% 2) Choos	e the rec	orded	package
path: ho version: d duration: start: Apr end: Apr size: 646.1 messages: d compression types: sen topics: /po	me/a/tan 18 2020 1 7 MB 562 : none [6 sor_msgs ints_raw	/2020-04-18-1 tart first 6:49:46.45 (15 62/662 chunk 5/PointCloud: 662 msgs :	6-48-40. ag 87199720.36 87199786.45) s] 2 [1158d486dd sensor_msgs,	Clic 151d683ce PointClo	2f1be655c	3c181]	DOCRAC	DVG		POT
25.0%	16 7%	16.7%	0.0%	9 1%	0.0%	9 1%	25.0%	compiz	(45.5 %C	PU)
23.070	10.776	10.770	5.076	5.170	0.076	5.170	23.07	/usr/bit /usr/lit /usr/lit python 10	n/perl (27. xorg/Xor x86_64-li (18.2 %C) GB/15G	3 %CPU) g (18.2 %CPU) nux-gnu/unity/ PU) B(10%)
			CPU3	CPU4	CPU5	CPU6	CPU7	Mem	ory	

Enter the map module of Autoware, select TF, here is a reference tf.launch which aim to connect the world coordinate system with the map coordinate system, and the base_link coordinate system with the velodyne coordinate system.

<!--->

<launch>

<node pkg="tf" type="static_transform_publisher" name="world_to_map" args="0 0 0 0 0 0 /world /map 10" />

<node pkg="tf" type="static_transform_publisher" name="base_link_to_velodyne" args="0 0 0 0 0 0 /base_link /velodyne 10" /> </launch>

😣 🖨 🗊 🛛 Ru	ntime M	lanagei								
Quick Start	Setup	Мар	Sensing	Computing	Interface	Database	Simulation	Status	Topics	State
(
Point Cloud /home/a/tan/autoware-200418.pcd										
🗌 Auto Up	date 1	x1 *	Area List :	None						Ref
			(1) C	lick the	Map m	odule				
Vector M	1ap	/home	/a/plant/ve	ec/area.csv,/h	ome/a/plan	t/vec/dtlane	.csv,/home/a	/plant/ve	c/idx.csv	,/h Ref
TF		/home	/a/tan/tf.la	unch						Ref
Map Tools	~								1	
	er		•						/	Ref
- CD TH	F	Point Ty	pe: Point		Leaf Size:	0.2		/		
			3 L0		le		_			Ref
PCD Binar	rizer F	Point Ty	pe: Point	XYZ ‡			(2) Ch	oose	TF fi	le
							ROSBAG	RV	iz	RQT
18.2%	45.5%	25	.0% 1	8.2% 27.3	3% 45.	5% 18.2	2% 18.29	6 comp /usr/li /sbin/ [kthre [kwo	iz (170.0 %C b/xorg/Xorg finit (0.0 %Cl eadd] (0.0 % rker/0:0H] (0	PU) (30.0 %CPU) PU) CPU) 0 %CPU)
CDUO	CDUI4						16 CDU	1	IGB/15GE	8(10%)
			-02 C	.P05 CP	04 CP	US CPU	00 CPU7	Men	lory	
w//ui										

Enter Sensing module, click voxel_grid_filter function of Points Downsampler, this function is the filtration of lidar data.

😣 🗖 🗉 Runtime Manager	
Quick Start Setup Map Sensing Computing Inter	face Database Simulation Status Topics State
Drivers CAN Can_converter Can_draw Can_listener Config Cameras PointGrey Grasshoper 3 (USB1) Config PointGrey Generic PointGrey LadyBug 5 Config USB Generic USB Generic IEEE 1394 Baumer VLG-22 IDS UI-3060CP	 Points Downsampler voxel_grid_filter ring_filter [sys] [app] distance_filter [sys] [app] distance_filter [sys] [app] Points Preprocessor ring_ground_filter [sys] [app] points_concat_filter [sys] [app] points_concat_filter [sys] [app] voxel_grid_filter grid_filter gys] [app] multi_lidar_calibrator [sys] [app]
AVT Vimba Mako [config]	Calibration Tool Kit Points Image
GNSS	Calibration Publisher Virtual Scan Image
Javad Delta 3 (TTY1) [config]	Scan Image
	ROSBAG RViz RQT
18.2% 20.0% 27.3% 40.0% 27.3%	18.2% 20.0% 10.0% compiz (166.7 %CPU) /usr/local/sunlogin/bin/sunlogin /usr/local/sunlogin/bin/sunlogin /sin/finit (0.0 %CPU) CPU5 CPU6 CPU7 Memory

Enter Computing module

Click localization->lidar_localizer->ndt_mapping

You can see the progress of the map creation in the terminal:

🛞 🚍 🗊 Runtime Manager	
Quick Start Setup Map Sensing Computing Interface Database Simulation Status Topics Statu	e
/home/a/tan/2020-04-18-16-48-40.bag Rd Rate: Start Time (s): Repeat	ef
Play Stop Pause Playing 0%	6
path: /home/a/tan/2020-04-18-16-48-10.bag version: 2.0 duration: 1:06s (66s) Click Pause start: Apr 18 2020 16:48:40.36 (1587199720.36) end: Apr 18 2020 16:49:46.45 (1587199786.45) size: 646.7 MB messages: 662 compression: none [662/662 chunks] types: sensor_msgs/PointCloud2 [1158d486dd51d683ce2f1be655c3c181] topics: /points_raw 662 msgs : sensor_msgs/PointCloud2	
Gazebo ROSBAG RViz RQT	-
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 Memory	(PU) g/play ros/de
✓ AutoWare	
😕 🖱 🗊 /home/a/autoware-1.8.0/ros/src/computing/perception/localization/packages/lidar_lo	call
0 0 0 1 shift: 0.223507	
(Processed/Input): (657 / 657)	
Sequence number: 822 Number of scan points: 14411 points. Number of filtered scan points: 449 points. transformed_scan_ptr: 14411 points. map: 275877 points. NDT has converged: 1 Fitness score: 0.00859861 Number of iteration: 2 (x,y,z,roll,pitch,yaw): (0.652094, -0.0121431, 0.0218467, -0.0013819, -0.00765293, -0.136574) Transformation Matrix: 0.990659 0.13616 -0.00739344 0.652094 -0.136146 0.990686 0.00241097 -0.0121431 0.00765286 -0.00138186 0.99997 0.0218467 0 0 1 shift: 0.223531 the value should be same after mapping	9

Back to Computing module

ndt_mapping		
topic:/config/ndt_mapping	1	1
Step Size	0.1	
Transformation Epsilon	0.01	\$
Maximum Iterations	30	\$
Leaf Size	1	\$
Minimum Scan Range	5	\$
Maximum Scan Range	200	\$
Minimum Add Scan Shift	1	-
Method Type pcl_generic pcl_anh pcl_anh_gpu pcl_openmp Use Odometry Use IMU Inverted IMU imu_topic /imu_raw	the map	
autoware-210224.pcd	R	ef
Filter Resolution 0.2 Original		
PCD OUTPUT		
Close		

ndt_mapping		
topic:/config/ndt_mapping Resolution	1	
Step Size	0.1	•
Transformation Epsilon	0.01	•
Maximum Iterations	30	\$
Leaf Size	1	\$
Minimum Scan Range	5	-
Maximum Scan Range	200	-
Minimum Add Scan Shift —	1	-
Method Type pcl_generic pcl_anh pcl_anh_gpu pcl_openmp Use Odometry Use IMU Inverted IMU imu_topic /imu_raw	he map	
autoware-210224.pcd	R	ef
Filter Resolution 0.2 Original		
PCD OUTPUT		
Close		

If you want to view the map, install

\$ sudo apt-get install pcl-tools

Then you can view the map, Press the numbers 1 2 3 4 on the keyboard to change the map color

\$ pcl_viewer Autoware-200418.pcd

3) Demonstration of mapping, waypoint recording, waypoint following

function

The waypoint recording is also offline, first enter the Simulation module

8 🔿 🗊 R	untime M	anager			1000			a		
Quick Start	Setup	Map Sensi	ng Compu	ting Inte	erface Data	abase Sin	nulation	Status	Topics	State
/home/a/ Rate:	tan/2020-	-04-18-16-48-4 Time (s):0	E R	nter Sim Iodule	ulation	/				Ref
Play	Stop	Pause			Playing	0% 2	Choose	e the rec	orded p	ackage
path: ho version: duration: start: Api end: Api size: 646 messages: compressio types: set topics: /p	ome/a/tar 0 18 2020 1 7 MB 662 n: none [6 nsor_msg oints_raw	n/2020-04-18-1 Start first 16:49:46.45 (15 562/662 chunk s/PointCloud: v 662 msgs :	6-48-40.03g 87199720.36 587199786.45 s] 2 [1158d486d sensor_msg:	d51d683c	ck Pause e2f1be655c3 ud2	ic181]				
Gazebo							ROSBAG	RVi	z] [RQT
25.0%	16.7%	16.7%	0.0%	9.1%	0.0%	9.1%	25.0%	compiz /usr/bir /usr/lib /usr/lib python	(45.5 %CF /perl (27.3 /xorg/Xorg /x86_64-lir (18.2 %CP	PU) 3 %CPU) 3 (18.2 %CPU) hux-gnu/unity/ PU)
CPUO	CPUI	CPUZ	CPUB	CPUIA	CPUS	CPU6	CPUT	10 Mem	GB/15GE	B(10%)
 √ut	oWo	Ire	cros	Croq	cros	crou	CFOT	men	U. y	

Enter Map module

Quick Start Setup Map Sensing Computing Interface Database Simulation Status Topics State Point Cloud /home/a/tan/autoware-200418.pcd Ref Ref Ref Auto Update 1x1 ‡ Area List: None Ref ① Choose Map module ③ Load Map ② Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref
Point Cloud /home/a/tan/autoware-200418.pcd Ref Auto Updae 1x1 ÷ Area List: None Image: Choose Map module Image: Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref TF /home/a/tan/tf.launch Ref
Point Cloud /home/a/tan/autoware-200418.pcd Ref Auto Update 1x1 ‡ Area List: None Image: Choose Map module Image: Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref TF /home/a/tan/tf.launch Ref
Auto Updae 1x1 : Area List None Ref 1Choose Map module Ref 3 Load Map 2Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref TF /home/a/tan/tf.launch Ref
(1) Choose Map module (2) Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref TF /home/a/tan/tf.launch Ref
3 Load Map 2 Choose the map file at previous step Vector Map /home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref TF /home/a/tan/tf.launch Ref
Vector Map //home/a/plant/vec/area.csv,/home/a/plant/vec/dtlane.csv,/home/a/plant/vec/idx.csv,/h Ref
TF /home/a/tan/tf.launch Ref
TF /home/a/tan/tf.launch Ref
(4) Load TF
Map 1001s Choose TE Ref
PCD Filter Point Type: Point XYZ 1 Leaf Size: 0.2
PCD Binarizer Ref
Point Type: PointXYZ ‡
ROSBAG RViz ROT
10 204 45 504 25 004 10 204 27 204 45 504 10 204 10 204 compiz (170.0 %CPU)
10.2 % 43.3 % 23.0 % 16.2 % 27.3 % 43.3 % 16.2 % 16.2 % /usr/lib/xorg/Xorg (30.0 %CPU) /sbin/init (0.0 %CPU) [kthreadd] (0.0 %CPU) [kworke/0:0H] (0.0 %CPU)
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 Memory

Enter Sensing module

😆 😑 🗉 🛛 Runtime Manager							
Quick Start Setup Map Sensing	g Computing	Interface	Database	Simulation	Status	Topics	State
Drivers CAN Can_converter can_draw can_listener <u>[config]</u> Cameras PointGrey Grasshoper 3 (USB1) PointGrey Generic	ensing Mod	lule	Points Down Voxel g Voxel g ring_filt distance random Points Prepret ring_gre ray_gro points_	sampler rid_filter [sv er [sys] [a e_filter [svs] filter [sys] ocessor ound_filter [und_filter [second_filter concat_filter	rs] [<u>app</u> pp]] [app] [<u>app</u>] svs] [ap [svs] [ap [svs] [ap] [ac [ac [aqe	
 PointGrey LadyBug 5 [config] USB Generic IEEE1394 Baumer VLG-22 IDS UI-3060CP Sekonix 3322/3323 GMSLCamer 	② Click	the vox	el grid_ uston c multi_li	finter [dar_calibrato	<u>sys</u>][a] 「[<u>sys</u>]	<u>99</u>] [<u>app</u>]	
AVT Vimba Mako [config]			Calibration T	ool Kit	Po	ints Imag	je
GNSS		C	alibration Pu	ublisher	Virtual Scan Image		
Javad Delta 3 (TTY1) [config]					S	can Imag	e
				ROSBAG	RV	iz	RQT
18.2% 20.0% 27.3% CPU0 CPU1 CPU2	40.0% 27.	3% 18.: U4 CPI	2% 20.0 J5 CPU	0% 10.09 J6 CPU7	6 <mark>comp</mark> /usr/li /usr/lo /sbin/ [kthre 1 7 Men	iz (166.7 %C b/xorg/Xorg ocal/sunlogir init (0.0 %Cl add] (0.0 % IGB/15GE	PU) (41.7 %CPU) y/bin/sunloging PU) CPU) 3(10%)
∾ ∧utoWare							

Enter Computing module

In the third step, then select a folder to save the path file path waypoint_saver.

waypoint_saver	
	_
Save File //home/a/tan/saved_waypoints.csv	1
Choose the path to save file	
Save/current_velocity	
Interval 1	
OK Cancel	

Back to the Simulation module, click Pause to start recording the path file, and wait

for the bag finished. Then you can generate a saved_waypoints.csv file.

uick Start	Setup	Map Sens	ing Comp	uting Inte	erface Dat	abase	Simulation	Status	Topics	State
		04-18-16-48-	10.bag							Re
ate:	Start	Time (s): 0	C Rep	eat						
Play	Stop	Pau	e		Plaving	0%				0
					, and the second s					66
h: /ho sion: 2.0	me/a/tan 0	/2020-04-18	16-48-10.bag	Click	Bauaa					
ation: 1	:06s (66s)			CIICK	Pause					
t: Apr	18 2020 1 18 2020 1	6:48:40.36 (1	587199720.3 587199786.4	36) 15)						
CAC	7.40									
e: 040.	/ MB									
e: 040. ssages: 0	7 MB 662 1: DODe [6	62/662 chun	ks]							
e: 040. ssages: mpression es: sen	7 MB 662 n: none [6 isor_msg:	62/662 chun s/PointCloud	ks] 12 [1158d486	idd51d683ce	e2f1be655c	3c181]				
e: 646. ssages: npression es: sen bics: /po	662 n: none [6 sor_msg: pints_raw	62/662 chun s/PointCloud 662 msgs	ks] 12 [1158d486 : sensor_ms	idd51d683ce gs/PointClo	e2f1be655c oud2	3c181]				
e: 646. ssages: 6 npressior es: sen pics: /pc	7 MB 662 n: none [6 isor_msg: pints_raw	62/662 chun s/PointCloud 662 msgs	ks] j2 [1158d486 : sensor_ms	idd51d683ce gs/PointClo	e2f1be655c oud2	3c181]				
e: 040. Issages: m Inpression Ies: sen Dics: /pc	7 MB 662 n: none [6 nsor_msg: pints_raw	62/662 chun s/PointCloud 662 msgs	ks] 2 [1158d486 : sensor_ms	dd51d683ce gs/PointClo	e2f1be655c: oud2	3c181]				
e: 040. ssages: 0 npressior les: sen lics: /pc	7 MB 662 n: none [6 isor_msg: bints_raw	62/662 chun s/PointCloud 662 msgs	ks] d2 [1158d486 : sensor_ms	idd51d683ce gs/PointClo	e2f1be655c: ud2	3c181]				
e: 040. ssages: o npressior ses: sen bics: /po	7 MB 662 h: none [6 isor_msg: bints_raw	62/662 chun s/PointCloud 662 msgs	ks] 12 [1158d486 : sensor_msi	5dd51d683ce gs/PointClo	e2f1be655c: ud2	3c181]				
e: 040. Isssages: mpression ses: sen bics: /pc	7 MB 662 h: none [6 isor_msg: bints_raw	62/662 chun s/PointCloud 662 msgs	ks] 12 [1158d486 : sensor_ms	idd51d683ce gs/PointClo	e2f1be655c: ud2	3c181]				
e: 040. sssages: mpression ses: sen bics: /pc	7 MB 662 n: none [6 nsor_msg bints_raw	62/662 chun s/PointCloud 662 msgs	ks] 12 [1158d486 : sensor_ms	idd51d683ce gs/PointClo	e2f1be655c: ud2	3c181]	ROSBAG	RV	liz	RQT
e: 040. ssages: mpression es: sen bics: /pc	0.0%	62/662 chun s/PointCloud 662 msgs	ks] i2 [1158d486 : sensor_ms 9.1%	idd51d683ce gs/PointClo 36.4%	e2f1be655c: oud2 0.0%	9.1%	ROSBAG 33.39	RV 6 pytho	/iz	RQT
e: 040. ssages: mpression ves: sen bics: /pc Gazebo	0.0%	62/662 chun s/PointCloud 662 msgs 0.0%	ks] d2 [1158d486 : sensor_ms 9.1%	idd51d683ce gs/PointClo 36.4%	e2f1be655c: oud2 0.0%	9.1%	ROSBAG 33.39	RV 6 pytho /usr/l	fiz	RQT 9() 9 (9.1 %C 9)
e: 040. ssages: mpression es: sen bics: /po	0.0%	62/662 chun s/PointCloud 662 msgs	ks] 12 [1158d486 : sensor_ms 9.1%	idd51d683ce gs/PointClo 36.4%	e2f1be655c: oud2	9.1%	ROSBAG 33.39	RV 6 pytho /ost/l /opt/ /opt/	fiz in (72.7 %CP iz (9.1 %CP) oz,kinetic/, e/a/autowa	RQT 2(9.1 %CU) 10/rosbag re-1.8.0/r
azebo	0.0%	62/662 chun s/PointCloud 662 msgs 0.0%	ks] d2 [1158d486 : sensor_ms 9.1%	36.4%	e2f1be655c: oud2 0.0% CPU5	9.1% CPU6	ROSBAG 33.39	6 pytho /usr/l comp /opt/i /hom	Tiz in (72.7 %CF ib/xorg/Xorg iz (9.1 %CF) ros/kinetic/l /a/autowa IGB/15GI noru	RQT 20) 3 (9.1 %C U) ib/rosbag re-1.8.0/r B(12%)

4) Constructing 3D point cloud map with Autoware and view 3D point

cloud data

Firstly, it is needed to record the point cloud data package:

```
Start lidar:
$ roslaunch rslidar_pointcloud rs_lidar_16.launch
Start Autoware:
```

```
$ cd Autoware-1.8.0/ros/
$ ./run
```

Enter Map module, loading map and TF

😣 🖨 🗊 Runti	ime Mana	iger								
Quick Start S	Setup M	ap Sensin	g Comput	ing Inte	erface Da	tabase	Simulation	Status	Topics	State
		R								
Point Cloud	d /ha	me/a/tan/a	utoware-200	041 <mark>8.pcd</mark>						Ref
	e 1x1	 Area Lis 	None							Ref
		•	Ochar		un un a du	Ja				
0	3 1 0 20	Man	UCHOC	se wa		ne ose th	e man fil	e at ni		c sten
Vector Man			hundaraa co	v /homo/						J Step
		ine/a/plant		v,/nome/	aptantyve	cyuttane	.csv,/nome/a	plancyve	cylux.cs	ATT REI
TE	/ho	me/a/tan/t	flaunch							Ref
	-			F						7
Map Tools		- 0		•						Dof
PCD Filter			- 100/7		5 Cincy 0 2		GCnoo	ose IF		Kei
	Poli	r Type: Po	INCAYZ	• Lea	1 Size: 0.2	•				
PCD Binarize										Ref
PCD billanze	Poir	t Type: Po	intXYZ	÷						
							ROSBAG	RV	iz	RQT
18.2% 4	5.5%	25.0%	18.2%	27.3%	45.5%	18.2	18.29	6 comp /usr/li /sbin/ [kthre [kwo	iz (170.0 %C b/xorg/Xorg finit (0.0 %C eadd] (0.0 % rker/0:0H] (0	(30.0 %CPU) (30.0 %CPU) PU) CPU) 0.0 %CPU)
		CDUD	CDUD	CDUIA	CDUIS			1	GB/15GE	3(10%)
			CPU3	CPU4	CP05	CPU	Jo CPU7	Men	nory	
w//ulo	vvare	,								

Enter Sensing module, loading point cloud filtering

😣 🗖 🗉 Runtime Manager					
Quick Start Setup Map Sensing Computing Inte	rface Database	Simulation	Status	Topics	State
Drivers CAN Can_converter can_draw can_listener Cameras	 Points Down voxel g ring_filt distance random Points Prepre 	sampler rid_filter [sv ^{cer} [<u>sv</u> s] [a e_filter [svs _filter [svs pocessor	/s][<u>app</u>] []] [][]][]] []]] []]]] []]]]]]]]]]]	
PointGrey Grasshoper 3 (USB1) [config]		und_filter [s	svs ap		
 PointGrey Generic PointGrey LadyBug 5 [config] Click the 		rifter [[svs][a sys][ap	ара] рр]	
 USB Generic IEEE1394 Baumer VLG-22 IDS UI-3060CP Sekonix 3322/3323 GMSLCamera 	n usion multi_li	dar_calibrato	" [<u>sys</u>] [<u>app</u>]	
AVT Vimba Mako [config]	Calibration T	ool Kit	Po	ints Imag	je
GNSS	Calibration Pu	ıblisher	Virtua	al Scan In	nage
Javad Delta 3 (TTY1) [config]			Sc	an Imag	e
		ROSBAG	RV	iz	RQT
18.2% 20.0% 27.3% 40.0% 27.3%	18.2% 20.0	0% 10.09	% compi /usr/li /usr/lc /sbin/i [kthre 1	z (166.7 %Cl b/xorg/Xorg ccal/sunlogin init (0.0 %CF add] (0.0 % GB/15GE	PU) (41.7 %CPU) //bin/sunlogino PU) CPU) 8(10%)
	CPUS CPU	JO CPU	i men	loi y	

Enter Computing module

Starting the chassis:

\$ rosrun hunter_robot hunter_robot

Start the speed conversion: Here to transform the /twist_amd subject of Autoware

to the /cmd vel subject that we can control

Th chassis need to be placed at the starting point location at this moment

\$ rosrun hunter_robot speed

Open the RVIZ, loading Autoware-1.9,0/rviz/op_planner.rviz file

🙆 🗇 🗊 op_planner.rv	iz* - RViz								
ी Interact कि Move Can	nera Select	🚸 Focus Camera	m Measure	🗡 2D Pose Estim	nate 🛛 💉 2D Na	w Goal 🛛 🂡	Publish Point	上 Op Flag	33
 ▼ [®] Global Options Fixed Frame Background Color Frame Rate Default Light ▼ ✓ Global Status: Ok ✓ Fixed Frame ▶ © Crid ▶ © PointCloud2 ▼ ✓ Status: Ok Topic Unreliable Selectable Style Size (Pixels) Alpha Decay Time Position Transformer Queue Size Axis Autocompute V 	world 48; 48; 48 30 CK C Points_raw Points 1 1 0 XYZ AxisColor 10 X								4
	Remove	Reliance							
DOS Timer 00720 14 D	OS Elansada R	5 0	In Times 4	00222165 20	Wall Flansed	79.07		Experiment	e kal
RUS TIME. 99729.14 R	US Etapsed: [8,	V7	vau rime:	370223133.39	waii ciapsed:	10.92		Experimen	ntal
Reset								3	31 Fps

Additional content: If you want the chassis to drive in a circle, copy the

saved_waypoints.csv file 1st to 3rd line path to the end.

5) Use hybrid A* to autonomous navigation

Start Autoware:

- \$ cd Autoware-1.8.0/ros/
- \$./run

Start lidar:

\$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start the chassis:

\$ rosrun hunter_robot hunter_robot

Start speed transformation:

\$ rosrun hunter_robot speed

Enter the map module of Autoware, select and load Point Cloud and TF

😕 🗖 🗊 Runti	ime M	anager								
Quick Start S	etup	Мар	Sensing	Computing	Interface	Database	Simulation	Status	Topics	State
Point Cloud	t (/home,	/a/tan/aut	oware-200418	.pcd					Ref
🗌 Auto Updat	te 1	k1 *	Area List :	None						Ref
			① L	oad map	,					
Vector Map		/home,	/a/plant/ve	• ec/area.csv,/h	ome/a/plan	t/vec/dtlane	.csv,/home/a	/plant/ve	c/idx.csv	,/h Ref
TF				unch						Ref
Map Tools	N									
PCD Filter			•							Ref
Point Type: PointXYZ Leaf Size: 0.2										
	_				le					Ref
PCD Binarize	P	oint Ty	/pe: Point	XYZ ‡						
							ROSBAG	RV	iz	RQT
18.2% 4	5.5%	25.	.0% 1	8.2% 27.3	3% 45.	5% 18.2	2% 18.29	6 comp /usr/li /sbin/ [kthre [kwoi	iz (170.0 %C b/xorg/Xorg finit (0.0 %Cl eadd] (0.0 % 'ker/0:0H] (0	PU) (30.0 %CPU) PU) CPU) .0 %CPU)
CPU0 C	PU1	CF	PU2 C	PU3 CPI	U4 CPI		J6 CPU7	1 7 Men	IGB/15GE	3(10%)
🐼 /uto\	Wa	re								

Enter Sensing module, loading vexel_grid_filter and Virtual Scan Image

Enter Computing module

Click and loading Localization->lidar_localizer->ndt_matching Localization->Autoware_connector->vel_pos_connect Mission Planning->lane_planner->lane_rule Mission Planning->lane_planner->lane_rule Mission Planning->freespace_planner->astar_navi

😣 🗖 🗊 Runtime Manager	_	_	_	_	_	_	_	
Quick Start Setup Map Sen	sing Compu	ting Inter	face Data	abase S	Simulation	Status	Topics	State
Drivers CAN can_converter can_draw can_listener [config] Cameras PointGrey Grasshoper 3 (US PointGrey Generic PointGrey LadyBug 5 [con USB Generic IEEE1394 Baumer VLG-22 IDS UI-3060CP Sekonix 3322/3323 GMSLCar	(1) Point (B1) [config] fig]	loud filt	 Points Points Points ra Points ra ra p cl Fusion m 	Downsa oxel_gric ng_filter istance_f andom_fi Preproco ng_groun oints_coo loud_tran nulti_lida	Impler d_filter [sy: filter [sys] ilter [sys] ilter [sys] essor Ind_filter [sy Ind_filter [sy Ind_filter [Insformer [Insformer [s] [<u>app</u> pp] [app] [<u>app</u>] svs] [ap [svs] [ap [svs] [a [sys] [a]] 5] 5] 5] 90] 90] 90]	
AVT Vimba Mako [config]		Calibration Tool Kit Points				ints Imag	je	
GNSS			Calibra	tion Publ	lisher	Virtu	al Scan In	nage
Javad Delta 3 (TTY1) [conf	<u>ig]</u>					S	can Imago	e
		2Load	l virtual	laser	ROSBAG	RV	iz	RQT
0.0% 0.0% 0.0%	0.0%	0.0%	8.3%	0.0%	0.0%	top (1 /usr/lo /sbin/ [kthre [kwor 1	6.7 %CPU) cal/sunlogin init (0.0 %CF add] (0.0 % ker/0:0H] (0 GB/15GE	/bin/sunloging PU) CPU) .0 %CPU) 8(12%)
CPU0 CPU1 CPU2	CPU3	CPU4	CPU5	CPU6	CPU7	Men	nory	,,
₩ /\utoWare								

Semantics->laserscan2costmap

Motion_planning->astar_planner->obstacle_avoid

Motion_planning->astar_planner->velocuty_set

Motion_planning->lattice_planner->lattice_velocity_set

Motion planning->lattice planner->path select

Motion planning->waypoint follower->pure pursuit

Motion_planning->waypoint_follower->twist_filter

Open RVIZ, loading the Autoware-1.8.0/rviz/op_planner.rviz file

Then select a navigation target point on RVIZ, you can see that a navigation path

is generated, and the car follows this path to the navigation target point.

Note: Obstacles cannot be avoided during the planning process, it is needed to

scan by lidar before the planning to avoid the obstacles.

6) Use Autoware for local path planning

Local planning has to combined with tracking along the line or global planning. Here is the instruction for how to track along the line.

Start Autoware:

```
$ cd Autoware-1.8.0/ros/
$ ./run
```

Start lidar:

\$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start chassis:

\$ rosrun hunter_robot hunter_robot

Start speed conversion:

\$ rosrun hunter_robot speed

Enter the map module of Autoware, select and loading Point Cloud and TF

😣 🖨 🗊 Runti	me Ma	anager								
Quick Start S	etup	Map	ensing	Computing	Interface	Database	Simulation	Status	Topics	State
						1				
Point Cloud		/home/a	/tan/aut	oware-20041	8.pcd					Ref
			oo List :	None						Def
			(1) L	oad Point	cloud m	ар				
Vector Map		home/a	/plant/v	ec/area.csv,/h	nome/a/plan	t/vec/dtlane	.csv,/home/a	/plant/ve	c/idx.csv	,/h Ref
TF	- *	home/a,	/tan/tf.la	aunch						Ref
Map Tools	_		-3	IF						
PCD Filter										Ref
	P	oint Type	e: Poin	XYZ ‡	Leaf Size:	0.2				
	_ [Ref
PCD Binarize	P	oint Type	e: Poin	XYZ ‡						
							ROSBAG	RV	iz	RQT
8.3% 15	5.4%	35.79	6	7.7% 15	.4% 7.7	7% 15.4	1% 7.7%	compi top (1 /usr/li /sbin/	z (61.5 %CP 5.4 %CPU) b/xorg/Xorg init (0.0 %CP	U) (7.7 %CPU) PU)
						_		2	GB/15GE	3(15%)
	PU1	CPU	2 (CPU3 CF	PU4 CP	US CPI	J6 CPU7	Men	погу	
	wa	re								

Enter Sensing module, downloading Points Downsampler->vexel_grid_filter

Enter Computing module, loading

Localization->lidar_localizer->ndt_matching

Localization->Autoware_connector->vel_pose_connect

Mission Planning→lane planner->lane rule

Mission_Planning→lane_planner→lane_select

Mossion_planning→OpenPlanner-Local planning→op_common_params

 $Mossion_planning \rightarrow OpenPlanner-Local \ planning \rightarrow op_trajectory_generator$

 $Mossion_planning \rightarrow OpenPlanner-Local\ planning \rightarrow op_motion_predictor$

 $Mossion_planning \rightarrow OpenPlanner-Local \ planning \rightarrow op_trajectory_evaluator$

 $Mossion_planning \rightarrow OpenPlanner-Local\ planning->op_behavior_selector$

Loading

 $Detection \rightarrow lidar_tracker \rightarrow lidar_kf_contour_track$

Motion Planning->OpenPlanner-Simulator->op_perception_simulator

Motion Planning->lattice_planner->lattice_velocity_set

Motion Planning→lattice_planner→path_select

Motion Planning→waypoint_marker→waypoint_loader

Motion Planning->waypoint_follower->pure_pursuit

Motion Planning->waypoint_follower->twist_filter

Open RVIZ, download Autoware-1.8.0/rviz/op_planner.rviz file

You can see that the car is walking along a fixed line, and there are also several

partially planned paths around.

At this moment, a virtual obstacle can be added and placed at the edge of the

local path, Autoware is planning to pass this virtual obstacle.

If you need to avoid obstacles, you need to add camera recognition or point cloud

clustering (the function has been improved)

7) Use Autoware for global planning

Combined with local planning, simulation for obstacles passing

Start Autoware:

```
$ cd Autoware-1.8.0/ros/
$ ./run
```

Start the lidar:

\$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start the chassis:

```
$ rosrun hunter_robot hunter_robot
```

Start speed transformation:

\$ rosrun hunter_robot speed

Enter the map module of Autoware, select and load Point Cloud, Vector Map and TF

😕 🖨 🗊 Runtime	Manage	r							-
Quick Start Setu	р Мар	Sensing	Computing	Interface	Database	Simulation	Status	Topics	State
C									
Point Cloud	/home	/a/tan/aut	oware-200418	3.pcd					Ref
	7								
Auto Update	1x1 ‡	Area List :	None						Rer
		`(1) L	oad Point	cloud m	ар				
Vector Map	home	/a/plant/ve	ec/area.csv,/h	ome/a/plan	t/vec/dtlane	.csv,/home/a	/plant/ve	c/idx.csv	,/h Ref
		<u> </u>	.oad Vect	or Map					
TF	thome	/a/tan/tf.la	unch						Ref
Map Tools		3	TF						
									Ref
PCD Filter	Point Ty	pe: Point	XYZ ‡	Leaf Size:	0.2				
									Def
PCD Binarizer									Rer
	Point Ty	/pe: Point	XYZ ‡						
						ROSBAG	RV	iz	RQT
8.3% 15.49	% 35	.7% 7	.7% 15.	4% 7.7	% 15.4	1% 7.7%	compi top (1	z (61.5 %CP 5.4 %CPU)	U)
							/usr/li /sbin/	b/xorg/Xorg init (0.0 %CF	(7.7 %CPU) PU)
_			_				2	GB/ <u>15</u> GE	3(15%)
CPU0 CPU	1 CF	PU2 C	PU3 CP	U4 CPI	J5 CPU	J6 CPU7	Men	nory	
W /\utoW	are								

Enter Sensing module, load Points Downsampler->vexel_grid_filter

Enter Computing module and loading

Localization->lidar_localizer->ndt_matching

Localization->Autoware_connector->vel_pose_connect

Mission Planning→lane planner->lane rule

Mission Planning→lane planner→lane select

Mission_Planning→OpenPlanner-Global Planning->op_global_planner

Mossion_planning→OpenPlanner-Local planning→op_common_params

Mossion_planning→OpenPlanner-Local planning→op_trajectory_generator

Mossion_planning→OpenPlanner-Local planning→op_motion_predictor

Mossion planning→OpenPlanner-Local planning→op trajectory evaluator

Mossion_planning→OpenPlanner-Local planning->op_behavior_selector

Loading

 $Detection \rightarrow lidar_tracker \rightarrow lidar_kf_contour_track$

Motion Planning->OpenPlanner-Simulator->op_perception_simulator

Motion Planning->lattice_planner->lattice_velocity_set

Motion Planning→lattice_planner→path_select

Motion Planning→waypoint_marker→waypoint_loader

Motion Planning->waypoint_follower->pure_pursuit

Motion Planning->waypoint_follower->twist_filter

Open RVIZ, loading sutoware-1.8.0/rviz/op_planner.rviz file

Move the mouse to RVIZ, select a target point on the vector map, it would

generate global planning path. Then adding virtual obstacles to the edge of the

local path, and there would be a detour path.

 Colsol options Back frame world Back proved Color Prame Name Prame Name	
Head Frage Period Bedgingel Cole 42, 66, 40 Derivative A Pressition A V Cole A	et (ivig) ± Zero
 Mariter Mariter MariterArrey MariterArrey MariterArrey<th>et.rusp. ; 2ee</th>	et.rusp. ; 2ee
Add Duplicate Remove Remove	Remove Rename

4. Products and services

8) Edit vector map

Official website: https://tools.tier4.jp/ It is needed to edit the map on the website, register a tier account, log in and select the edit map page.

Vector Map Builder

Vector Map Builder is a tool that helps to create a vector map from point cloud data. The vector map represents a set of features inherent to the road, such as lanes, stop lines, traffic lights, and intersections. These pieces of information are particularly leveraged by Autoware, popular open-source software for self-driving, to enhance capabilities of path planning, object detection, traffic light recognition, and other critical tasks. For Autoware ~v1.12

The output of Vector Map Builder is compatible to ADAS Map but is highly limited. Those who look for the complete version of High-Precision ADAS Map are encouraged to visit the website of Alsan Technology Co. Ltd. Alk objective ADAM has the seque to ADAM has the seque that is instructing to a list SADAS (tips a signified takens of Alsa Technology Co. Lt SADA

See the video for specific editing map tutorials

After exporting the map, it is needed to copy the dtlane.csv file manually to the .csv map file which just exported, and download the vector map later.

i) After-sales policy

a. Maintenance service

1. If the product is sold within 1 year(from the date of product acceptance and inspection, if the corresponding acceptance check receipt is not provided, the sold time would subject to 15 working days after signing the contract), if there is a any problems about the performance of product (No artificial cause damage), our company provides after-sales and maintenance services which based on the circumstances . If the product is sold more than 1 year (from the date of product acceptance and inspection, if the corresponding acceptance check receipt is not provided, the sold time would subject to 15 working days after signing the contract), then lifetime maintenance paid service is available.

2. Customers need to pay for the freight in the following situations

- 1) The situation is not covered by the warranty.
- 2) Product return for after-sales service application.
- 3) Product inspection does not meet the conditions of return and exchange terms.

b. Warranty

1. You can enjoy free maintenance service when the product is sold with the following situations:

1) The production does not work normally for the first time;

2) If there is any problems about performances with proper operation. (No artificial cause damage);

3) Free for maintenance or accessories replacing if any problems or damages occur within 15 days from the date of inspection checking;

4) The following five warranty accessories would not be maintenance for free if there is any problems after the acceptance completed and accepted.

c. Non-warranty coverage accessories: Warranty time period table

HUNTER	Tyre	No warranty
	Appearance sheet metal	No warranty
	parts	
	Power system(Motor/	6 months
	Timing belt/ Reduction	
	box/ Cardan joint)	
	Power battery	6 months
	Charger	12 months
	Main control panel	12 months
	Motor drive board	12 months
	Remote control	12 months
	Remote control receiver	12 months
Lidar		12 months
IPC		12 months
4G router		12 months
LCD		12 months

d. Non-warranty coverage

Warranty service is unavailable in the following situations :

1. Artificial damage, including unauthorized dismantling of the machine, collision and so on ;

2. The relevant proof of purchase is not provided, or the proof of purchase content does not match the product;

3. The proof of the purchase content has been altered or blurred and cannot be identified;

4. Force majeure.

e. Paid technical support service available in the following situations:

- 1. Fail to follow the manual instruction to operate the machine and force majeure
- 2. Artificial cause damage, such as falling, squeezing, immersion, etc.;
- 3. The machine have been repaired by other companies;
- 4. Changing or using the other company's accessories to cause machine breakdown or damage;
- 5. Other damages not caused by products or accessories;

6. Place the product in a condition that exceeds its own environmental limitation: such as corrosion, oxidation, burns and excessive humidity cause by environmental rapid changing;

- 7. Proof Product purchase and sales company is not provided;
- 8. The purchase date exceed the warranty coverage period.

ii) Technical support service

1) This product provides the concept of education development, let everyone enjoys the fun of self-driving . As the initiator of Autoware, we are willing to work together to discuss the solution and solving problems.

2) Provide limited technical support and development guidance service.

iii) Value added service

1) Off-line training service (Basic training for existing product) ¥3000 one person per day

5. Frequently asked question

6. Development advice and guidance