
AgileX Robotics Autoware Open Sourse Autonomous Kit

1. Basic hardware configuration list

a) Computing unit and accessories

No. Accessories Model Quantity

1

Computing unit

ASUS VC66 (i7-

9700 16G 512G

M.2 NVME + Solid

1

2
Computing power

adapter
24v to 19V (10a) 1

3
A set of mouse and

keyboard
 1

4
14-inch wireless

screen

b) Perception equipment and accessories

No. Accessories Model Quantity

1 Multi line lidar Robosense RS16 1

2 24V VRM 24v to 19V (10a)

c) Integrated navigation and accessories (optional)

No. Accessories Model Quantity

1 Integrated

navigation
Newton M2 1

2 RF connecter 2

3 Data/Power

connecter
 1

4 GPS aerial 2

5 Base of the aerial 2

d) Chassis platform

No. Accessories Model Quantity

1 Chassis mobile HUNTER/HUNTER 2 1

platform

2 Remote Controller FS i6s 1

3 USB to CAN CAN analyzer 1

Note: Due to the different network standard in different countries and regions, unfortunately

the router is not able to provide within the accessories list, users can purchase the router

based on the requirement by themselves.

2. Basic function of Autoware development kit and description

of ODD

1) Basic function of development kit

 Introduction to the wire control of the chassis

 Control the chassis by ROS

 View the lidar 3D point cloud data based on Robosense RS16

 Use Autoware to build 3D point cloud map, and view 3D point cloud data

 Use Autoware to record path points

 Use Autoware to follow path points

 Use Autoware to follow path points (obstacle avoidance)

 Use hybrid A* for free navigation (static detour)

 Use Autoware for local part path planning (set up multiple lane changes)

 Edit vector maps (lane lines, zebra crossings, curbs, etc.)

 Use Autoware for global path planning (combined with vector map)

2) Description of ODD

Item Content

Application conditions Indoor and outdoor environment

Applicable road situation Clear Roads and limited situation(security, logistics,

autonomous driving)

Weather Regular weather such as sunny, cloudy, and foggy

(visibility above 100 meters)

Pavement requirements 1. Smooth and relative clean roads (asphalt roads,

cement roads, etc.), excluding construction roads with

many protrusions or depressions or roads with many

scattered objects;

2. Wet environment (the depth of water should not

exceed the height of the chassis bottom for 5cm, not

putting in the water);

3. Less than 10° slope is recommended when climbing

up (it can be increased appropriately according to the

different chassis drive capacity);

Valid period The period which there is enough sunshine during the

day and high visibility at night

Speed ≤10km/h

Working humidity 0~80%

3. Basic Introduction:

i. Hardware Introduction

1) Chassis platform

HUNTER1.0

HUNTER1.0 is a programmable UGV with Ackermann steering model which its

chassis is based on Ackermann steering theory. Therefore, it is similar to normal cars

and high performances on cement and asphalt roads . Compared with the four-

wheel differential chassis, HUNTER chassis has higher performances for load carrying

and speed, also it causes less abrasion for the structure and tires. Although HUNTER

is not designed for all kinds of terrains, it is equipped with a swing arm suspension

which is able to go through some normal obstacles such as speed bumps, etc.

Additional extension such as stereo camera, laser lidar, GPS, IMU and robotic

manipulator can be installed on HUNTER optionally. HUNTER is mostly used for

autonomous driving education ,research, indoor and outdoor security patrolling,

environment sensing, general logistics and transportation.

HUNTER 2.0

HUNTER2.0 was born for low-speed self-driving which based on front-wheel

Ackerman steering theory and swing arm suspension, is able to pass different kind

of obstacles, secondary development interfaces and standard installation

components are making HUNTER2.0 the best solution for mobile robot self-

driving program. Compared with HUNTER1.0, the upgraded version HUNTER2.0

has gradient parking function which achieved long-term ramp parking. If the

vehicle is powered off or malfunctions while driving on a sloped road, the tires will

be locked, making it stable and reliable. HUNTER2.0 has lithium iron phosphate

battery and the capacities can be customized based on the requirement. The

speed also can be customized up to 10km/h, meet the requirements of different

autonomous driving scenarios.

2) Robosense Introduction

RS-LiDAR-16 uses 16 laser heads to simultaneously emit high-frequency laser

beams to continuously scan the external environment. Because it has high-speed

digital signal processing technology and ranging algorithms to acquire three-

dimensional space point cloud data and object reflectivity rate, so that the

machine is able to observe the surrounding and highly capable for location

navigation and obstacles avoidance.

Figure 2 Robosense lidar

Sensor  TOF method ranging 16 channel

 Range: 20cm-150m (Target reflectivity rate 20%)

 Precision:+/-2cm (Typical value)

 Visual angle (Vertical): ±15°（Total 30°)

 Angular resolution: (Vertical): 2°

 Visual angle (Horizontal) : 360°

 Angular resolution (Horizontal/azimuth): 0.09° (5Hz) to 0.36°

（20Hz)

 Speed: 300/600/1200rpm (5/10/20Hz)

Laser  Class 1

 Wavelength: 905nm

 Laser launch angle: Horizontal 3mrad, Vertical 1.2mrad

Output  320kBytes/s

 100M Internet

 UDP include

Distance information

Rotation angle information

Calibrated reflectivity information

Synchronized time label (Resolution ratio 1us)

Mechanical/electronic

operation

 Power consumption: 9w (Typical value)

 Operational voltage: 12VDC (With interface box, stable voltage)

 Size: Diameter 109mm * Height 82.7mm

 Protective safety level: IP67

 Operational temperature range: -10°C~+60°C

3) Introduction of computing unit

The computing unit uses intel i7-9700 processor which main frequency is eight-

core and eight-wire 3Ghz , up to 32 GB memory and two hard disks.

ii. System Architecture

1) Introduction of Autoware system

Autoware is the first open source integration software for autonomous driving

vehicle in the world. Autoware is mainly suitable for cities, but also applicable to

highway and non-municipal roads . At the same time, there are development and

application resources on the Autoware open source software which is built on ROS

operating system. The first official version was released by the Nagoya University

research team with the leadership of Prof. Shinpei Kato in August 2015. In late

December 2015, in order to maintain Autoware and apply it to real self-driving

cars, Prof. Shinpei Kato founded Tier IV . As the time goes on, Autoware has

became an open source project acknowledged by the public. Autoware is also

the first "all in one" open source software for autonomous driving technology in

the world.

Autoware contains the required function modules. In this manual, there are only

general concept for function modules, customers are welcome to develop detail

research by their own.

Perception

Autoware support camera, LiDAR, IMU and GPS as the main sensor. From the

technical view, if it is not verified, as long as the sensor driver software is provided,

almost all kinds of cameras, LiDAR, IMU and GPS can be applicable in Autoware.

Computing/Perception

The perception ability of Autoware is consisted of localization, perception and

prediction. Though combining 3D maps with SLAM algorithms of GNSS and IMU

sensor to achieve localization. Perception contains sensor fusion algorithm and

deep neural networks camera and Lidar. Prediction is based on the results of

localization and perception.

Localization

lidar_localizer use scan data from LiDAR and pre-install 3D map information to

calculate self-driving car position in global coordinate (x, y, z, roll, pitch, yaw). We

suggest to use the NDT algorithm to match the LiDAR scan with the 3D map, and

the ICP algorithm is also applicable.

gnss_localizer converts the NMEA messages from GNSS receiver to the (x, y, z, roll,

pitch, yaw) position. This result can be used as the location of the autonomous

vehicle independently, or it can be used to initialize and supplement of the

lidar_localizer result.

Generally, dead_reckoner uses IMU sensors to predict the next frame position of

the autonomous vehicle, and interpolates the results of lidar_localizer and

gnss_localizer.

Perception

Lidar_detector acquires the point cloud data from 3D laser scanner and it has

object detecting function which based on LiDAR. The Euclidean clustering

algorithm supports the basic performance which is able to find the clusters of

LiDAR scans (point clouds) above the ground. In order to classify clusters, it

support the algorithm base on DNN such as VoxelNet and LMNet.

vision_detector acquires image data from the camera and it has object detection

function which is based on image. Main algorithm includes R-CNN, SSD and Yolo

which are designed to single DNN executing to achieve actual-time performance.

and support various different detection types, such as cars and passengers.

vision_tracker is able to track the results of vision_detector. This algorithm is based

on Beyond Pixels. Project the tracking result on the image platform, and combine

it with the result of lidar_detector in 3D space by using Fusion_tools.

fusion_detector requires the point cloud data from laser scanner and image data

from camera, and achieve accurate target detection in 3D space. The position of

laser scanner and camera must be calibrated in advance. The current

implementation is based on the MV3D algorithm, this network has less

extensibility compared with the original algorithm.

fusion_tools are able to combine the result of lidar_detector and vision_tracker.

The information identified by vision_detector is add to the point cloud cluster

detected by lidar_detector.

object_tracker is the motion of the object detected and recognized by the above

procedure. The tracking results can be used for object behavior prediction in the

future and object velocity evaluation. The tracking algorithm is based on a Kalman

filter. Another variant also supports particle filters.

Prediction

object_predictor uses the results of the above object tracking to predict the future

route of moving objects (such as cars and passengers).

collision_predictor use the results of object_predictor to predict whether the

autonomous car is going to collide with any kinds of object in motion. In addition

to the results of object tracking, the information of route trajectory and speed of

the autonomous vehicle is also required as input data.

cutin_predictor use the same information as collision_predictor did to predict

whether there is any neighbour car cut in front of the autonomous vehicle.x

Computing/Decision

Autoware's decision-making module contains perception and planning modules.

According to the result of perception, the driving behavior of Autoware is

represented by the finite state machine, so that the appropriate planning function

can be selected. The current decision-making method is based on the rule system.

Computing/Planning

The last module of Autoware is the planning module which function is making

plans for global tasks and local (at the time) movement based on the results of the

perception and decision-making modules. Generally, the global task is determined

when the autonomous vehicle is started or restarted, and the local motion is

updated based on the state changing. For example, if the state of Autoware is set

to "Stop", the plan is setting the speed of the autonomous vehicle to zero in front

of an object with a safety margin or stop at the stop line. Another example is that

if the state of the automatic software is set to "Avoid", the trajectory of the

autonomous vehicle is planned to pass the obstacle. The main software packages

included the planning module as follows.

Planning

·route_planner searches for the global route to the destination. The route is

represented by a set of intersections in the network.

·lane_planner determines to use which lanes and the route generated by

route_planner. The lane is represented by a set of road signs and multiple road

signs (each road sign is corresponding to a lane) generated by this package.

·waypoint_planner can be used to generate a set of guide points to the

destination. The difference between this package and lane_planner is that it

generates a single way point instead of an array of way points.

·waypoint_maker is a practical tool for saving and loading manual way points. If it

is needed to save way points to a specific file, please drive the vehicle manually

after activating localization, Autoware will record the way points and speed

information of the driving route. You can download the recorded way points from

the specific file later, so that the motion planning module is able to follow the

path.

Motion

·velocity_planner get updates from lane_planner, waypoints_planner or

waypoints_maker

Speed plans for way points is slow/accelerate vehicles for different road

circumstances, such as stop lines and traffic lights. Please note that the speed

information embedded in a given waypoint is static, and the package will update

the speed plan based on the driving circumstances.

astar_planner executes the hybrid A* search algorithm, this algorithm generates

the path from current position to specific position. The software package can be

used to avoid obstacles and make sudden turns on given way points as well as

route selection in free spaces such as parking lots.

adas_lattice_planner execute the state lattices planning algorithm. The algorithm is

based on a spline curve, a predefined parameter table and ADAS mapping (also

known as vector mapping) information generates multiple feasible trajectories

before the current position. The software package is used for obstacle avoidance

and lane changing.

waypoint_follower executes the Pure Pursuit algorithm. The algorithm generates a

set of twisted velocities and angular velocities (or positive angles) to move the

autonomous vehicle to a target waypoint on a given waypoint in circular motion.

This package should be used in combination with velocity_planner, astar_planner

and/or adas_lattice_planner. The released set of twisted speed and angular speed

(or only angle) information will be acquired by the vehicle controller or wire

control interface. Finally, the autonomous vehicle will be under controlled

automatically.

2) Autoware low speed autonomous driving kit structure

Figure 5 Vehicle platform chassis system data flow diagram

iii. Basic introduction of software

1) Basic introduction of ROS

 ROS is Open Source robot operating system which based on Ubuntu system. It

has highly flexible software architecture for robot software programming. This

structure connects each node (independent program) in ROS, each node

communicates based on TCP\IP, and the nodes are connected with each other

through different themes. This structure includes a large number of tool software,

code base and protocol which is aimed to simplify the difficulties and complexity of

the process of creating complex and robust robot behaviors on the robot platform. It

helps avoiding the re-creating wheels problem the which making the development

easier and faster, skip the repetitive work.

 ROS is an open source operating system for robot, it has all the functions that

operating system do, including hardware abstraction, low-level device control,

implementation of commonly used functionality,message-passing between

processes, and package management. It also provides the services and library

function for acquiring, editing and translating, complying and running code across

computers. At the same time, ROS is also compatible with many third-party libraries

including opencv (computer vision), PCL (point cloud library) and so on. The interface

of ROS is also very diversity which is compatible with most sensors such as lidar, GPS,

and ultrasonic on the market. Users can add various sensor devices to their robots

based on their requirement. And ROS WIKI provides a large number of packages

which developed by users , these open source packages can meet user’s professional

project requirements. The main function of ROS is providing services designed for

code reusing support for robot researching and development. ROS is a distributed

process (node) frame, these process are encapsulated in the procedures packages

and function that are easy to share and release. ROS also supports a joint system

similar to code repository which can achieve project collaboration and released. This

design can make the development and implementation of a project completely

independent from the file system to the user interface (not restricted by ROS). At the

same time, all projects can be integrated by ROS basic tools. In conclusion, ROS aims

to make robot development become easier, faster and more interesting.

2) Basic introduction of Autoware

 Autoware is the first integration open source software for autonomous driving

vehicle in the world. Mostly, Autoware is suitable for cities, but highways,

intersection areas and geo-fence are also applicable. All rights for Autoware's code

base are reserved by is the Apache 2 license. For safety reasons, we provide a

simulation environment based on ROSBAG for those who do not have self-driving

technology.

(b) System software and hardware environment construction

1. Hardware installation

a) Accessories list

Accessories list Table of Accessories list Quantity of

components

Remarks

Computing unit Computing unit 1

 Mouse and keyboard 1

Multi line lidar Multi line lidar sensor 1

Sensor controller 1

Liquid crystal

display module

Liquid crystal display

screen

1

mini-hdmi to hdmi wire 1

usb to type-c wire 1

usb-to-can usb-to-can module 1

Power module 24v to 12v 1

24v to 19v 1

Chassis module

HUNTER mobile chassis 1

Aviation plug (with line) 1

Vehicle controller 1

Note: Due to the different network standard in different countries and regions, unfortunately

the router is not able to provide within the accessories list, users can purchase the router

based on the requirement by themselves.

b) Accessories electrical description

Accessories name Electrical characteristics of

accessories

Remarks

Computing unit DC 19v@6.5a

Multi line lidar DC 12v@0.8a (Typical

values 9w)

Liquid crystal display

screen

DC 5v

4G Router DC 12v@0.8a

c) Power connection topographic diagram

The vehicle contains two voltage conversion modules, all of which are powered by

the battery of the chassis, and both are from the aviation plug on the top of the

hunter. The voltage is 21.5v~29.2v, and it will change with the external movement

during use. However, the sensor module mentioned above mainly contains two

electrical characteristics, one is 12v and the other is 19v, so two voltage stabilizing

modules are used in the chassis.

d) Data flow diagram

 The Autoware Autonomous Driving Education Development Kit contains the

front-end perception, the intermediate data transmission and processing calculation,

and the rear-end actuator. The front-end perception is consist of multi line lidar

sensor and rtk-gps (adapting). In order to facilitate customers to develop new

sensors, a 4G router is included in the accessories to facilitate customers to develop

other sensor units. The data processing unit in the middle uses a intel i7 9700

processor, and it is equipped with a screen to debugging and use. The data flow

diagram is shown in the following figure.

mailto:12v@0.8a

e) Installation

2. Software installation

ROS Installation, refer to: http://wiki.ros.org/kinetic/Installation/Ubuntu

$ sudo sh -c '. /etc/lsb-release && echo "deb

http://mirrors.ustc.edu.cn/ros/ubuntu/ `lsb_release -cs` main" >

/etc/apt/sources.list.d/ros-latest.list'

$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --

recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

$ sudo apt-get update

$ sudo apt-get install ros-kinetic-desktop-full

$ apt-cache search ros-kinetic

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

$ sudo apt install python-rosdep python-rosinstall python-

rosinstall-generator python-wstool build-essential

$ sudo apt install python-rosdep

$ sudo rosdep init

http://wiki.ros.org/kinetic/Installation/Ubuntu

Normally, there would be an error, then it is needed to modify the hosts file. Refer to:

https://blog.csdn.net/u013468614/article/details/102917569

#Open hosts file

 sudo gedit /etc/hosts

#Add to the end of the file

151.101.84.133 raw.githubusercontent.com

#Exit after saving and then try again

$ sudo rosdep init

$ rosdep update

Create workspace:

$ mkdir -p ~/catkin_ws/src

$ cd catkin_ws/src/

$ catkin_init_workspace

$ cd ..

$ catkin_make

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

Restart the computer.

Installation of Can analyzer rely:

Copy libcontrolcan.so to /usr/local/lib

$ sudo cp libcontrolcan.so /usr/local/lib

Can authorization Configuration ：

$ sudo gedit /etc/udev/rules.d/99-mysub.rules

Add contents:

ACTION=="add",SUBSYSTEMS==

"usb",ATTRS{idVendor}=="04d8",

ATTRS{idProduct}=="0053",

GROUP="users",MODE="0777"

https://blog.csdn.net/u013468614/article/details/102917569

When the configuration is completed

$ sudo ldconfig

Compile the code:

Copy hunter_robot in the src file folder to workspace

$ cd ~/catkin_ws/

$ catkin_make

Install qt: (Use 5.6.2 version here)

qt download page: https://www.qt.io/download

Go to the directory with the qt installation package:

$ sudo chmod +x qt-opensource-linux-x64-5.6.2.run

$./qt-opensource-linux-x64-5.6.2.run

Keep clicking Next until the installation is completed.

Install opencv:

Install 3.4.2 version here, interlink: https://opencv.org/releases/page/3/

Refer to: https://blog.csdn.net/u010632165/article/details/81387700

Unzip opencv, and then enter the opencv folder

$ sudo mkdir build

$ cd build

$ cmake ../

$ make -j8

$ sudo make install

Install Autoware, use 1.8.0 version here, source code:

https://gitlab.com/Autowarefoundation/Autoware.ai/Autoware/-/tree/1.8.0

If there is any problem with the installation process,. refer to:

https://blog.csdn.net/yourgreatfather/article/details/86504547

Unzip Autoware

$ cd Autoware-1.8.0/ros/

One-click installation of all relies:

$ rosdep install -y --from-paths src --ignore-src --rosdistro

$ROS_DISTRO

Compile

$./catkin_make_release

https://www.qt.io/download
https://opencv.org/releases/page/3/
https://blog.csdn.net/u010632165/article/details/81387700
https://gitlab.com/autowarefoundation/autoware.ai/autoware/-/tree/1.8.0
https://blog.csdn.net/yourgreatfather/article/details/86504547

Start Autoware:

$ cd Autoware-1.8.0/ros/

$./run

After start up successfully, start up interface is shown as follow:

3. Vehicle wire control

With the technological development of automotive electronic and the

integration of automotive systems, people can drive cars by means of electronic

instead of traditional mechanical mechanisms to transmit control signals. This

electronic technology is X-By-Wire. "By-Wire" can be called electronic wire control,

and "X" represents various systems in the car. Such as steering-by-wire, Brake-By-

Wire, etc.

Wire controlling is the basis of automatic driving. The basic requirement of wire

controlling is changing all the control behaviors of the vehicle from mechanical to

electronic control , from the original analog signal input to the digital signal input.

Agilex Robotics chassis HUNTER provides services includes steer by wire, throttle by

wire, and brake by wire. Besides the basic wire control function, our communication

interface also provides some feedback information from chassis.

The CAN communication standard in HUNTER products uses the CAN2.0B

standard, baud rate is 500K, message format is Motorola format. The linear velocity

and the angular velocity of rotation of the chassis can be controlled through the

external CAN bus interface. The information about current motion status and

HUNTER chassis status would be given by HUNTER.

The protocol includes system status feedback frame, motion control feedback

frame, and control frame. The content of the protocol as follows:

The system status feedback command includes the current car body status

feedback, control mode status feedback, battery voltage feedback, and fault

feedback. The protocol content is shown in Table 3.1.

Command

Name

System Status Feedback Command

Sending node Receiving node ID Cycle(ms) Receive-time

out(ms)

Steer-by-wire

chassis

Decision-making

control unit

0×151 20ms None

Data length 0×08

Position Function Data type Description

byte[0]

Current status

of vehicle body

unsigned int8

0×00 System in normal

condition

0×01 Emergency stop

mode(not enable)

0×01 System exception

byte[1] Mode control unsigned int8 0×00 Remote control mode

0×01 Command control mode

byte[2] Battery voltage

higher 8 bits

unsigned

int16

Actual voltage X 10 (with an

accuracy of 0.1V)

byte[3] Battery voltage

lower 8 bits

byte[4]

Failure

information

higher 8 bits

unsigned

int16

See notes for details【**】

byte[5]

Failure

information

lower 8 bits

byte[6]

Count parity bit

(count)

unsigned int8 0-255 counting loops,which will

be added while single

command has been sent

byte[7] Parity bit

(checksum)

unsigned int8 Parity bit

Description of Failure Information

Byte Bit Meaning

byte [4] bit [0] Check error of CAN communication control command (0: No

failure 1: Failure)

bit [1] Abnormal condition of front wheel steering encoder (0: No

failure 1: Failure)

bit [2] RC transmitter disconnection protection (0: No failure 1:

Failure)[1]

bit [3] Reserved, default 0

bit [4] Reserved, default 0

bit [5] Reserved, default 0

bit [6] Reserved, default 0

bit [7] Reserved, default 0

byte [5] bit [0] Battery under-voltage failure (0: No failure 1: Failure)

bit [1] Battery over-voltage failure (0: No failure 1: Failure)

bit [2] No.1 motor communication failure (0: No failure 1: Failure)

bit [3] No.2 motor communication failure (0: No failure 1: Failure)

bit [4] No.3 motor communication failure (0: No failure 1: Failure)

bit [5] No.4 motor communication failure (0: No failure 1: Failure)

bit [6] Motor drive over-temperature failure (0: No failure 1:

Failure)

bit [7] Motor over-current failure (0: No failure 1: Failure)

The command of movement control feedback frame includes the feedback of current

linear speed and angular speed of moving vehicle body. For the detailed content of

protocol, please refer to Table 3.2.

Command

Name

Movement control Feedback Command

Sending node Receiving node ID Cycle(ms) Receive-time

out(ms)

Steer-by-wire

chassis

Decision-making

control unit

0×131 20ms None

Data length 0×08

Position Function Data type Description

byte[0] Moving speed

higher 8 bits

signed int16

Actual speed X 100 (with an

accuracy of 0.001rad)

byte[1] Moving speed

lower 8 bits

byte[2] Internal steering

angle higher 8

bits

signed int16

Actual speed X 100 (with an

accuracy of 0.001rad)

byte[3] Internal steering

angle lower 8

bits

byte[4] Reserved - 0×00

byte[5] Reserved - 0×00

byte[6]

Count parity bit

(count)

unsigned int8

0-255 counting loops,which will

be added once every command

sent

byte[7] Parity bit

(checksum)

unsigned int8 Parity bit

The control frame includes mode controlling, failure clearing command, control

openness of linear speed, control openness of internal steering angle and sum check.

For more protocol detail, please refer to Table 3.3.

Command

Name

Control command

Sending node Receiving node ID Cycle(ms) Receive-time

out(ms)

Decision-making

control unit

Chassis node 0×130 20ms None

Data length 0×08

Position Function Data type Description

byte[0] Control mode unsigned int8 0×00 Remote control mode

0×01 Command control

mode[1]

byte[1] Failure clearing

command

unsigned int8 See Note 2 for details*

byte[2] Linear speed

percentage

signed int8 Maximum speed 1.50m/s,

value range(-1,100)

byte[3] Internal

steering angle

percentage

signed int8 Maximum internal steering

angle (-25°,25°), value

range(-100,100)

byte[4] Reserved - 0×00

byte[5] Reserved - 0×00

byte[6]

Count parity bit

(count)

unsigned int8

0-255 counting loops,which

will be added once every

command sent

byte[7] Parity bit

(checksum)

unsigned int8 Parity bit

(c) Basic function demonstration and development tutorial

1) Early setting

lidar configuration, RS-LiDAR-16 as sample . Since Autoware is adapted to velodyne's

lidar, it is necessary to modify the code of RS-LiDAR to have better adaption to

Autoware.

Copy the ros_rslidar package to the workspace, refer to:

https://www.ncnynl.com/archives/201807/2552.html

There are two modifications. One is modifying the frame_id of the lidar and find the

27th line of code in ros_rslidar/rslidar_driver/src/rsdriver.cpp:

private_nh.param("frame_id", config_.frame_id, std::string("rslidar"));

change to:

private_nh.param("frame_id", config_.frame_id, std::string("velodyne"));

The other is modifying the output topic of lidar, find the 23rd line of code in

ros_rslidar/rslidar_pointcloud/src/convert.cc:

private_nh.param("output_points_topic", output_points_topic,

std::string("rslidar_points"));

change into:

private_nh.param("output_points_topic", output_points_topic,

std::string("points_raw"));

After saving, enter the workspace and compile:

$ cd ~/catkin_ws

$ catkin_make

Change lidar IP, click system setting→Network→Cable→Option→IPv4 setting

Set the IP to 192.168.1.102, restart computer after the setting is completed.

2) Vehicle status feedback, control the vehicle through the keyboard

Course 1: Start the chassis and control
$ roscore

$ rosrun hunter_robot hunter_robot

Control by the keyboard:

Install the package teleop_twist_keyboard, refer to:

https://blog.csdn.net/allians/article/details/80583652

Download
$ sudo apt-get install ros-kinetic-teleop-twist-keyboard

Start
$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

The speed should not be too fast, reduce the speed to around 0.2m/s by pressing the

Z key on the keyboard. And then the buttons u l o j k l m are for controlling the

chassis.

Controlling by the handle:

Install the package joy_node, refer to:

https://blog.csdn.net/han_l/article/details/77885238

Download
$ sudo apt-get install ros-kinetic-joy

Start
$ roslaunch hunter_robot joy.launch

Now you can control the chassis by Bluetooth handle.

The Bluetooth handle module is BETOP (Taobao 200 yuan), it is better to put a

picture of the handle.

2), 3D laser point cloud data acquirement

There are two ways to create maps which are online map creation and offline map

creation. We use offline map creation mostly , because the result of online map

creation is a bit disappointed.

Start Autoware:

$ cd Autoware-1.8.0/ros/

$./run

Start lidar:
$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Click the ROSBAGd on Autoware interface

Select the lidar data/points_raw which need to be recorded, click Start to start

recording

Controlling the vehicle to run a round in an unknown environment, try to move as

slow as possible, remember the location of the starting point which is needed use for

tracking along the trail. After recording is completed, click Stop to stop recording, and

put the recorded package in a folder.

Enter the Simulation module of Autoware, select the package that just recorded, click

Play and click Pause to pause immediately.

Enter the map module of Autoware, select TF, here is a reference tf.launch which aim

to connect the world coordinate system with the map coordinate system, and the

base_link coordinate system with the velodyne coordinate system.

<!---->

<launch>

<node pkg="tf" type="static_transform_publisher" name="world_to_map" args="0

0 0 0 0 0 /world /map 10" />

<node pkg="tf" type="static_transform_publisher" name="base_link_to_velodyne"

args="0 0 0 0 0 0 /base_link /velodyne 10" />

</launch>

Enter Sensing module, click voxel_grid_filter function of Points Downsampler, this

function is the filtration of lidar data.

Enter Computing module

Click localization->lidar_localizer->ndt_mapping

You can see the progress of the map creation in the terminal:

Back to Computing module

If you want to view the map, install
$ sudo apt-get install pcl-tools

Then you can view the map, Press the numbers 1 2 3 4 on the keyboard to change

the map color
$ pcl_viewer Autoware-200418.pcd

3) Demonstration of mapping, waypoint recording, waypoint following

function

The waypoint recording is also offline, first enter the Simulation module

Enter Map module

Enter Sensing module

Enter Computing module

In the third step, then select a folder to save the path file path waypoint_saver.

Back to the Simulation module, click Pause to start recording the path file, and wait

for the bag finished. Then you can generate a saved_waypoints.csv file.

4) Constructing 3D point cloud map with Autoware and view 3D point

cloud data

Firstly, it is needed to record the point cloud data package:

Start lidar:
$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start Autoware:

$ cd Autoware-1.8.0/ros/

$./run

Enter Map module, loading map and TF

Enter Sensing module, loading point cloud filtering

Enter Computing module

Starting the chassis:

$ rosrun hunter_robot hunter_robot

Start the speed conversion: Here to transform the /twist_amd subject of Autoware

to the /cmd_vel subject that we can control

Th chassis need to be placed at the starting point location at this moment

$ rosrun hunter_robot speed

Open the RVIZ, loading Autoware-1.9,0/rviz/op_planner.rviz file

Additional content: If you want the chassis to drive in a circle, copy the

saved_waypoints.csv file 1st to 3rd line path to the end.

5) Use hybrid A* to autonomous navigation

Start Autoware：

$ cd Autoware-1.8.0/ros/

$./run

Start lidar：

$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start the chassis：

$ rosrun hunter_robot hunter_robot

Start speed transformation：

$ rosrun hunter_robot speed

Enter the map module of Autoware, select and load Point Cloud and TF

Enter Sensing module, loading vexel_grid_filter and Virtual Scan Image

Enter Computing module

Click and loading Localization->lidar_localizer->ndt_matching

Localization->Autoware_connector->vel_pos_connect

Mission Planning->lane_planner->lane_rule

Mission Planning->lane_planner->lane_rule

Mission Planning->freespace_planner->astar_navi

Semantics->laserscan2costmap

Motion_planning->astar_planner->obstacle_avoid

Motion_planning->astar_planner->velocuty_set

Motion_planning->lattice_planner->lattice_velocity_set

Motion_planning->lattice_planner->path_select

Motion_planning->waypoint_follower->pure_pursuit

Motion_planning->waypoint_follower->twist_filter

Open RVIZ, loading the Autoware-1.8.0/rviz/op_planner.rviz file

Then select a navigation target point on RVIZ, you can see that a navigation path

is generated, and the car follows this path to the navigation target point.

Note: Obstacles cannot be avoided during the planning process, it is needed to

scan by lidar before the planning to avoid the obstacles.

6) Use Autoware for local path planning

Local planning has to combined with tracking along the line or global planning. Here

is the instruction for how to track along the line.

Start Autoware：

$ cd Autoware-1.8.0/ros/

$./run

Start lidar：

$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start chassis：

$ rosrun hunter_robot hunter_robot

Start speed conversion：

$ rosrun hunter_robot speed

Enter the map module of Autoware, select and loading Point Cloud and TF

Enter Sensing module, downloading Points Downsampler->vexel_grid_filter

Enter Computing module, loading

Localization->lidar_localizer->ndt_matching

Localization->Autoware_connector->vel_pose_connect

Mission_Planning→lane_planner->lane_rule

Mission_Planning→lane_planner→lane_select

Mossion_planning→OpenPlanner-Local planning→op_common_params

Mossion_planning→OpenPlanner-Local planning→op_trajectory_generator

Mossion_planning→OpenPlanner-Local planning→op_motion_predictor

Mossion_planning→OpenPlanner-Local planning→op_trajectory_evaluator

Mossion_planning→OpenPlanner-Local planning->op_behavior_selector

Loading

Detection→lidar_tracker→lidar_kf_contour_track

Motion Planning->OpenPlanner-Simulator->op_perception_simulator

Motion Planning->lattice_planner->lattice_velocity_set

Motion Planning→lattice_planner→path_select

Motion Planning→waypoint_marker→waypoint_loader

Motion Planning->waypoint_follower->pure_pursuit

Motion Planning->waypoint_follower->twist_filter

Open RVIZ, download Autoware-1.8.0/rviz/op_planner.rviz file

You can see that the car is walking along a fixed line, and there are also several

partially planned paths around.

At this moment, a virtual obstacle can be added and placed at the edge of the

local path, Autoware is planning to pass this virtual obstacle.

If you need to avoid obstacles, you need to add camera recognition or point cloud

clustering (the function has been improved)

7) Use Autoware for global planning

Combined with local planning, simulation for obstacles passing

Start Autoware：

$ cd Autoware-1.8.0/ros/

$./run

Start the lidar:

$ roslaunch rslidar_pointcloud rs_lidar_16.launch

Start the chassis:

$ rosrun hunter_robot hunter_robot

Start speed transformation:

$ rosrun hunter_robot speed

Enter the map module of Autoware, select and load Point Cloud, Vector Map and TF

Enter Sensing module, load Points Downsampler->vexel_grid_filter

Enter Computing module and loading

Localization->lidar_localizer->ndt_matching

Localization->Autoware_connector->vel_pose_connect

Mission_Planning→lane_planner->lane_rule

Mission_Planning→lane_planner→lane_select

Mission_Planning→OpenPlanner-Global Planning->op_global_planner

Mossion_planning→OpenPlanner-Local planning→op_common_params

Mossion_planning→OpenPlanner-Local planning→op_trajectory_generator

Mossion_planning→OpenPlanner-Local planning→op_motion_predictor

Mossion_planning→OpenPlanner-Local planning→op_trajectory_evaluator

Mossion_planning→OpenPlanner-Local planning->op_behavior_selector

Loading

Detection→lidar_tracker→lidar_kf_contour_track

Motion Planning->OpenPlanner-Simulator->op_perception_simulator

Motion Planning->lattice_planner->lattice_velocity_set

Motion Planning→lattice_planner→path_select

Motion Planning→waypoint_marker→waypoint_loader

Motion Planning->waypoint_follower->pure_pursuit

Motion Planning->waypoint_follower->twist_filter

Open RVIZ, loading sutoware-1.8.0/rviz/op_planner.rviz file

Move the mouse to RVIZ, select a target point on the vector map, it would

generate global planning path. Then adding virtual obstacles to the edge of the

local path, and there would be a detour path.

4. Products and services

8) Edit vector map

Official website: https://tools.tier4.jp/

It is needed to edit the map on the website, register a tier account, log in and select

the edit map page.

See the video for specific editing map tutorials

After exporting the map, it is needed to copy the dtlane.csv file manually to the .csv

map file which just exported, and download the vector map later.

i) After-sales policy

a. Maintenance service

1. If the product is sold within 1 year(from the date of product acceptance and

inspection, if the corresponding acceptance check receipt is not provided, the sold

time would subject to 15 working days after signing the contract), if there is a any

problems about the performance of product (No artificial cause damage), our

company provides after-sales and maintenance services which based on the

circumstances . If the product is sold more than 1 year (from the date of product

acceptance and inspection, if the corresponding acceptance check receipt is not

provided, the sold time would subject to 15 working days after signing the contract),

then lifetime maintenance paid service is available.

2. Customers need to pay for the freight in the following situations

1) The situation is not covered by the warranty.

2) Product return for after-sales service application.

3) Product inspection does not meet the conditions of return and exchange terms.

b. Warranty

1. You can enjoy free maintenance service when the product is sold with the

following situations:

1) The production does not work normally for the first time;

2) If there is any problems about performances with proper operation. (No

artificial cause damage);

3) Free for maintenance or accessories replacing if any problems or damages occur

within 15 days from the date of inspection checking;

4) The following five warranty accessories would not be maintenance for free if

there is any problems after the acceptance completed and accepted.

c. Non-warranty coverage accessories: Warranty time period table

HUNTER Tyre No warranty

Appearance sheet metal

parts

No warranty

Power system(Motor/

Timing belt/ Reduction

box/ Cardan joint)

6 months

Power battery 6 months

Charger 12 months

Main control panel 12 months

Motor drive board 12 months

Remote control 12 months

Remote control receiver 12 months

Lidar 12 months

IPC 12 months

4G router 12 months

LCD 12 months

d. Non-warranty coverage

Warranty service is unavailable in the following situations :

1. Artificial damage, including unauthorized dismantling of the machine, collision and

so on ;

2. The relevant proof of purchase is not provided, or the proof of purchase content

does not match the product;

3. The proof of the purchase content has been altered or blurred and cannot be

identified;

4. Force majeure.

e. Paid technical support service available in the following situations:

1. Fail to follow the manual instruction to operate the machine and force majeure

2. Artificial cause damage, such as falling, squeezing, immersion, etc.;

3. The machine have been repaired by other companies;

4. Changing or using the other company’s accessories to cause machine breakdown

or damage;

5. Other damages not caused by products or accessories;

6. Place the product in a condition that exceeds its own environmental limitation:

such as corrosion, oxidation,burns and excessive humidity cause by environmental

rapid changing;

7. Proof Product purchase and sales company is not provided;

8. The purchase date exceed the warranty coverage period.

ii) Technical support service

1) This product provides the concept of education development, let everyone enjoys

the fun of self-driving . As the initiator of Autoware, we are willing to work together

to discuss the solution and solving problems.

2) Provide limited technical support and development guidance service.

iii) Value added service

1) Off-line training service (Basic training for existing product ）¥3000 one person

per day

5. Frequently asked question

6. Development advice and guidance

