

# A ready-to-use package to help you save time

This kit offers a **ready-to-develop** robotic solution, created **to save assembly time**.

- √ Mechanics: integration of components into the mobile base
- √ Electrical: connecting all equipment together
- √ Software: installation of component ROS packages

# Our goal @

Upon receipt of the mobile robot equipped with its ROS R&D kit, our customers can immediately develop their programmes and applications without having to design the entire system architecture beforehand.

# Software expertise: OS installation, ROS, and VNC

In addition to electronic and mechanical integration, our engineers handled the software side, installing the OS on the PCs via **Linux Ubuntu**.

This procedure includes the integration of **ROS** (Robot Operating System) and the various packages of essential components.

Alongside ROS, we also deploy an indispensable tool, **VNC** (Virtual Network Computing), which offers a dedicated page for connecting to the on-board computer's desktop.

This makes it possible to check the computer's status at any time, as well as to receive feedback from the sensors integrated into the kit.





# **Specifications**

#### **KIT**

# **DIMENSIONS**

Length: 580 mm Width: 400 mm

Height (without LiDAR): 220 mm

Weight: ~ 10 kg

# INCLUDED IN THE KIT

- √ Airy Robosense LiDAR
- √ RealSense Depth Camera D435
- √ 5G industrial router
- ✓ Asus NUC 15 Pro PC

# **OTHERS**

Materials: aluminum and plastic Black powder-coated finish Compatible with most AgileX, Clearpath, and Husarion robots Resistant to light rain Ventilated

# SYSTEM INTEGRATION

Operating system (OS): Ubuntu 20.04 or 24.04 Version: ROS 1 (Noetic) or ROS 2 (Humble)

#### **DEVELOPMENT TOOL**

#### ARDUSIMPLE RTK2B

Chip: ZED-F9P

#### Precision:

- < 1 cm with a base station up to 35 km
- < 1 cm with NTRIP up to 35 km
- < 4 cm with SSR corrections
- < 1.5 m in standalone mode
- < 0.9 m in standalone mode with SBAS coverage

First Fix Position: 25 seconds (cold start), 2 seconds (hot start) First RTK Correction: 35 seconds (cold start)

# **INTEGRATION**

# MECHANICAL INTEGRATION

Designing the casing, placing all components inside the box, and attaching the box to the robot.

# **ELECTRICAL INTEGRATION**

Connection of all sensors, the PC and the network.

# IT INTEGRATION

PC and network installation Installation of all ROS drivers Creation of the URDF and a launch file that initialises all components when the PC starts up.

# LIDAR

# Airy Robosense

- Hemispheric field of view: 360° × 90°
- Accuracy: ±1 cm
- Resolution: 96 beams
- Size:  $\phi 60 \times H63 \text{ mm}$
- Weight: < 240g
- Range: up to 30 m at 10% reflectivity
- Maximum range: 60 m
- Protection rating: IP67, IP6K9K
- Angular resolution (H x V): 0.4° x 0.47°

# **CAMÉRA**

# RealSense D435

Depth frame rate: up to 90 fps Minimum depth: 10.5 cm

Depth output resolution: up to 1280 x

Sensor resolution: up to 1920 x 1080 Connectors: USB-C 3.1 Gen 1 Dimensions: 90 x 25 x 25 mm

# **MAIN COMPUTER**

# Asus NUC 15 Pro

- Dimensions: 117 × 112 × 37 mm
- Processor: Intel Core Ultra
- Memory (RAM): 16 GB DDR5
- Storage: 500 GB NVMe SSD
- USB ports: up to 7 USB ports including 2 Thunderbolt 4
- Network: 1 × 2.5 GbE Ethernet
- Wi-Fi: Wi-Fi 7
- Bluetooth: 5.4
- Power supply: 19 V / 120 W adapt

# SPATIAL PHIDGET

# GENERAL INFORMATION

Sampling interval: 1 s/sample to 4 ms/sample Operating temperature: - 40°C to 85°C

# **ACCELEROMETER**

Max. acceleration measurement: ± 2,5 g Acceleration measurement resolution: 10 µg

# **GYROSCOPE**

Max. gyro speed (X axis, Y axis): ± 125°/s Gyroscope resolution (X axis, Y axis): 1E-05°/s

# **MAGNETOMETER**

Max. magnetic field: ± 49,2G Magnetometer resolution: 1.5 mg



