
Name Quantity

LIMO high-end body（With Off-road wheels X4） X1

Battery X1

Charger X1

APP_Agilex X1

1 LIMO Introduction

1.1 LIMO Robot

The AgileX LIMO robot is the world's first ROS development platform that integrates four motion
modes. It serves as a versatile learning platform that can adapt to a wide range of scenarios and
meet industry application requirements. It is well-suited for robot education, function research
and development, and product development.

With its innovative mechanical design, the LIMO robot enables swift transitions between four-
wheel differential, Ackermann, tracks, and Mecanum wheel motion modes. Additionally, it allows
for the establishment of multi-scenario simulation teaching and testing using professional sand
tables. Equipped with high-performance sensors such as NUC, EAI T-mini Pro Lidar, and depth
cameras, the LIMO robot performs well in precise autonomous positioning, SLAM mapping, route
planning, autonomous obstacle avoidance, and traffic light recognition.

1.2 Component list

af://n0
af://n2
af://n5

Items Parameters Values

Mechanical

Overall dimension 322*220*251mm

Wheelbase 200mm

Tread 175mm

Dead load 4.8kg

Load 4kg

Minimum ground clearance 24mm

Drive type Hub motor(4x14.4W)

Performance

No-load max. speed 1m/s

Ackermann minimum turning
radius

0.4m

Work environment -10~+40℃

Max. climbing capacity 20°

1.3 Tech specifications

af://n23

System

Power interface DC（5.5x2.1mm)

IPC Interl NUC11

OS Ubuntu22.04

IMU HI226

CPU i7-1135G7@2.40GHz x 8

GPU Xe Graphics

Battery 10Ah 12V

Working time 2.5H

Stand-by time 4h

Communication interface WIFI,Bluetooth

Sensor

LIDAR EAI T-mini Pro

Depth camera DaBai

USB-HUB TYPE-C x1、USB2.0 x2、HDMI

Front display
1.54 inch 128x64 white OLED display
screen

Rear display 7 inch 1024x600 IPS touch screen

Control
Control mode Mobile APP，command control

Mobile APP Bluetooth，maximum distance 10m

1.4 Operation instructions

（1）Long press the switch to start (short press to pause the program). Observe the electricity
meter, and charge or replace the battery in time when the last red light is on.

af://n26

Latch status Color of light Current mode

Push down Yellow 4-wheel diff or Track

Pull up Green Ackerman

2.电量表

1.开关

（2）Observe the status of the front latch and the color of the vehicle light to determine the
current mode:

Items Rated parameters

Typical capacity 10AH

Minimum capacity 10AH

Nominal voltage 11.1V

Charge cut-off voltage 12.6V

Discharge cut-off voltage 8.25V

Maximum continuous discharge current 10A

2 Instructions on Chassis Electrical Information

2.1 Battery and charging

2.1.1 Basic battery information

LIMO is equipped with a 12V battery with two interfaces. They are the yellow battery output
interface and the black battery charging interface.

The parameters of battery are as follow：

Battery precautions

In order to ensure the safety of transportation and storage, the battery supplied with LIMO is
not necessarily fully charged.

Please do not wait until the battery is fully exhausted before charging. And please charge the
battery in time when LIMO’s low battery level alarm is on;

LIMO will still generate a quiescent standby current when it is turned off. To prevent the
battery from over-discharging, please disconnect the battery from the vehicle body when you
do not use LIMO for a long time.

Please do not put the battery in fire or heat up the battery, and please do not store the
battery in high-temperature environment. The best temperature for battery storage is
-25℃~45℃.

LIMO must be charged with the original factory-equipped or certified battery.

2.1.2 Charging

LIMO is equipped with a 12.6V 5A charger by default to meet customers’ charging demand. There
is an indicator light on the charger to show the charging status.

When charging, please turn off the vehicle and remove the battery, and separate the battery
output interface from the vehicle body.

Connect the charging connector of the charger to the battery, and then turn on the charger's
power supply for charging.

af://n34
af://n35
af://n36
af://n61
af://n75

Charger indicator light’s color Charger status

Red Charging

Green flashing Almost fully charged

Green Fully charged

When fully charged, please separate the battery from the charger first, and then disconnect
the charger.

The charger status is as follows:

Charging precautions:

It is forbidden to use non-original chargers to charge the battery, and do not charge the
battery below 0°C.

When the indicator light of the charger turns green, it indicates that the charging is complete.
But to extend the battery usage life, the charger will trickle charge with a current of 0.1A for
about 0.5 hours.

At present, it takes about 2.5 hours for the battery to reach a fully charged state from 8.25V,
and the fully charged voltage of the battery is about 12.6V.

3 Chassis Driver File
The mobile chassis needs to be driven by a program to achieve the navigation of Limo. The
chassis driver of Limo only has the C++ version at the moment.

3.1 Driver file structure

The folder where the chassis driver is located is ~/agilex_ws/src/limo_ros2/limo_base. Enter this
folder through the following command.

The following is the file list of the limo_base package:

cd ~/agilex_ws/src/limo_ros2/limo_base

├── CMakeLists.txt

├── include

│ └── limo_base

├── launch

│ ├── limo_base.launch.py

│ ├── open_ydlidar_launch.py

│ └── start_limo.launch.py

├── package.xml

├── scripts

│ └── tf_pub.py

└── src

 ├── limo_base_node.cpp

 ├── limo_driver.cpp

 ├── serial_port.cpp

af://n100
af://n109
af://n111

Folder Stored files

include Library files called by the driver

launch Startup files of the driver

msg Message files needed by the driver

src Driver source code

scripts Python code

action action message files

srv server message files

The message file used by the chassis driver is located in the folder
~/agilex_ws/src/limo_ros2/limo_msgs. Enter this folder through the following command.

The following is the file list of the limo_msgs function package.

There are include, launch, src, scripts, action, srv, and msg folders under the two function
packages. The library files called by the driver are stored in the include folder; the driver startup
files are stored in the launch folder; the Python code is stored in the scripts folder; the action
message files are stored in the action folder; and the srv folder stored the server message files;
the msg message file is stored in the msg folder; the driver C++ source code is stored in the src
folder.

3.2 Msg files

In ROS 2, Msg files (Message files) are used to define custom message types in ROS 2. The Msg file
describes the structure and fields of the message, and multiple fields and data types can be
defined as needed.

The following is the customized Msg file in Limo called LimoStatus.msg:

 └── tf_pub.cpp

cd ~/agilex_ws/src/limo_ros2/limo_msgs

├── action

│ └── LimoAction.action

├── CMakeLists.txt

├── msg

│ └── LimoStatus.msg

├── package.xml

└── srv

 └── LimoSrv.srv

af://n146

The message file about Limo status is customized here. The meaning of each field is as follows:

1. std_msgs/Header header: This is a standard message type std_msgs/Header, which contains
timestamp and message source information.

2. uint8 vehicle_state: This is an unsigned 8-bit integer type field used to represent vehicle
status.

3. uint8 control_mode: This is an unsigned 8-bit integer type field used to represent the control
mode.

4. float64 battery_voltage: This is a 64-bit floating point type field used to represent battery
voltage.

5. uint16 error_code: This is an unsigned 16-bit integer type field used to represent error codes.

6. uint8 motion_mode: This is an unsigned 8-bit integer type field used to represent motion
mode.

This message type can be used in C++ or Python code in ROS 2 nodes for publish and subscribe
operations, as well as assignment and access according to the defined fields.

3.3 Srv files

Srv files (Service files) are used to define custom service types in ROS 2. The Srv file describes the
structure of the requests and responses of service, as well as related fields and data types.

The following is the customized srv file called LimoSrv.srv:

The meaning of each field is as follows.

The request part contains three fields:

float32 x: represents the x coordinate value in the request. The type is a 32-bit floating point
number.

float32 y: represents the y coordinate value in the request. The type is a 32-bit floating point
number.

float32 z: represents the z coordinate value in the request. The type is a 32-bit floating point
number.

The response part contains a field:

std_msgs/Header header

uint8 vehicle_state

uint8 control_mode

float64 battery_voltage

uint16 error_code

uint8 motion_mode

LimoSrv.srv

float32 x

float32 y

float32 z

std_msgs/Bool success

af://n165

std_msgs/Bool success：represents the result of service execution. Its type is std_msgs/Bool,
used to indicate whether the service was completed successfully.

By defining these fields, this service type enables the transmission of requests containing
coordinate values within the ROS 2 system and the subsequent return of execution results. It can
be utilized in C++ or Python code within ROS 2 nodes, facilitating both the provision and call of
services.

When acting as the service provider, requests comprising x, y, and z coordinates are received, and
appropriate operations are carried out based on the request content. The resulting execution
outcomes are then encapsulated into a response of type std_msgs/Bool and transmitted back to
the requester.

On the side of the service caller, a request can be created, with the x, y, and z coordinate values
populated, and subsequently sent to the service provider. Following this, the response is awaited,
and the success field within the response is parsed to get the execution result.

3.4 Action files

In ROS 2, Action files are used to define custom Action types. Action types allow long-term
asynchronous communication between nodes, and enable more complex behavior by interacting
between requests and responses.

The following is the customized Action file called LimoAction.action:

The meaning of each field is as follows.

The Goal contains three fields:

float32 x: represents the x coordinate value in the target, which is a 32-bit floating point
number.

float32 y: represents the y coordinate value in the target, which is a 32-bit floating point
number.

float32 z: represents the z coordinate value in the target, which is a 32-bit floating point
number.

The Result contains one field:

std_msgs/Bool success: Represents the result of Action execution. The type is std_msgs/Bool,
used to indicate whether the Action is completed successfully.

The Feedback contains one field:

uint32 status: represents the status of Action execution, the type is an unsigned 32-bit
integer.

LimoAction.action

float32 x

float32 y

float32 z

std_msgs/Bool success

uint32 status

af://n185

By defining these fields, this Action type can be used to pass targets containing coordinate values
in the ROS 2 system and return feedback on execution results and execution status. You can then
use this Action type in C++ or Python code in ROS 2 nodes, for example to create Action clients
and servers.

In the Action client, you can create a target, fill in the x, y, and z coordinate values, and send the
target to the Action server. Then, wait for the results and feedback to be received, and parse the
fields in the results and feedback to obtain the execution results and execution status.

On the Action server side, you can receive a target containing x, y, and z coordinates and perform
corresponding operations based on the target. Then, the execution results and status are
encapsulated into results and feedback and sent to the Action client.

3.5 Limo topic

In ROS 2, topic is a common communication mechanism used to transmit messages between ROS
2 nodes. It adopts a publish-subscribe (Publish-Subscribe) model, in which one node publishes
messages to a specific topic, and other nodes subscribe to the topic to receive messages.

Start the Limo chassis driver:

The following topics will be posted when starting the Limo chassis driver:

Here is a brief explanation of these ROS 2 topics:

1. /cmd_vel：

Function: Used to control the speed and direction of the robot.

Message type: geometry_msgs/msg/Twist

2. /imu：

Function: Publish the data of the Inertial Measurement Unit (IMU), such as acceleration,
angular velocity and attitude.

Message type: sensor_msgs/msg/Imu.

3. /limo_status：

Function: Publish information about the status of the robot, such as battery power, error
codes, etc.

Message type: Custom message type, depending on the specific application.

4. /parameter_events：

Function: Publish events related to the ROS parameter server, such as parameter
modification, addition or deletion.

ros2 launch limo_base limo_base.launch.py

/cmd_vel

/imu

/limo_status

/parameter_events

/rosout

/tf

/tf_static

/wheel/odom

af://n209

Items Minimum Default Maximum Unit Remarks

Ranging
frequency

/ 4000 / Hz
4000 ranging times per
second

Scanning
frequency

6 6 12 Hz

PWM signal needs to be
connected, and the
recommended frequency
is 6Hz.

Ranging
range

0.02 / 12 m
Indoor environment, and
objects with 80%
reflectivity

Scanning
angle

/ 0-360 / Deg /

Ranging
accuracy

/ 20 / mm
When 0.05m
<ranging≤12m

Pitch angle 0 0.75 1.5 Deg /

Message type: rcl_interfaces/ParameterEvent.
5. /rosout：

Function: Used to record log messages of ROS nodes.

Message type: rosgraph_msgs/Log.

6. /tf：

Function: Publish the coordinate transformation information of the robot, used to
realize the conversion between coordinate systems.

Message type: tf2_msgs/msg/TFMessage.

7. /tf_static：

Function: Publish static coordinate transformation information, similar to the /tf topic,
but these transformations will not change over time.

Message type: tf2_msgs/msg/TFMessage.

8. /wheel/odom：

Function: Publish robot wheel odometer data to estimate the robot's movement on the
ground.

Message type: nav_msgs/msg/Odometry.

4 LiDAR Mapping

4.1 Introduction and use of LiDAR

YDLIDAR T-mini Pro lidar is a 360° 2D lidar (hereinafter referred to as T-mini Pro) developed by
Shenzhen EAI Technology Co., Ltd. This product is based on the pulse ToF ranging principle, and is
equipped with related optical, electrical, and algorithm designs to achieve high-frequency and
high-precision distance measurement. At the same time, the mechanical structure rotates 360
degrees to continuously obtain angle information, thereby achieving 360-degree scanning ranging.
, output the point cloud data of the scanning environment.

af://n273
af://n274

Items Minimum Default Maximum Unit Remarks

Angle
resolution

0.54 Deg

Here's how to use it:

Launch a new terminal and enter the command:

After launching successfully, the terminal will output the following log information, as shown in the
figure:

Then launch a new terminal and enter the command in the terminal:

After launching the rviz, click 'Add' , choose 'Laserscan', and click 'ok'.

ros2 launch ydlidar_ros2_driver ydlidar.launch.py

rviz2

After the rviz visualization software runs successfully, the green data displayed is the laser data
scanned by LiDAR.

Message type of scan topic: sensor_msgs/msg/LaserScan.

header : Message header, including timestamp, frame ID and other information.

angle_min : The minimum angle for laser scanning.

angle_max : The maximum angle of laser scanning.

angle_increment : Angle increment of laser scanning.

time_increment : Time increment for each laser scan.

scan_time : Total time of laser scanning.

range_min : the minimum range of laser ranging.

range_max : The maximum range of laser ranging.

ranges : an array of laser ranging data, representing the distance value corresponding to

each angle.

intensities : array of laser ranging intensity data, optional field.

By subscribing to the /scan topic, other nodes can receive and process lidar scan data. Common

applications include mapping, obstacle detection, navigation and path planning.

4.2 Cartographer mapping

4.2.1 Introduction of cartographer algorithm

Cartographer is a set of SLAM algorithms based on image optimization launched by Google. The
main goal of this algorithm is to achieve low computing resource consumption and achieve the
purpose of real-time SLAM. The algorithm is mainly divided into two parts. The first part is called
Local SLAM. This part establishes and maintains a series of Submaps through each frame of the
Laser Scan, and the so-called submap is a series of Grid Maps. The second part called Global
SLAM, is to perform closed-loop detection through Loop Closure to eliminate accumulated errors:
when a submap is built, no new laser scans will be inserted into the submap. The algorithm will
add the submap to the closed-loop detection.

4.2.2 Operation of cartographer mapping

Note: Before running the command, please make sure that the programs in other terminals
have been terminated. The termination command is: Ctrl+c.

Note: The speed of limo should be slow in the process of mapping. If the speed is too fast,
the effect of mapping will be affected.

First, start the LiDAR. Launch a new terminal and enter the command:

Then start the cartographer mapping algorithm. Open another new terminal and enter the
command:

ros2 launch limo_bringup limo_start.launch.py

ros2 launch limo_bringup limo_cartographer.launch.py

af://n367
af://n368
af://n370

After launching successfully, the rviz visualization interface will be shown in the figure below:

After building the map, it is necessary to save it. Three following commands need to be entered in
the terminal:

5 LiDAR Navigation
Two laser mapping methods were used above. Then use the map just built to navigate.

ros2 run nav2_map_server map_saver_cli -f map

af://n383

5.1 Navigation framework

The key to navigation is robot positioning and path planning. For these, ROS provides the
following two packages.

（1）move_base：achieve the optimal path planning in robot navigation.

（2）amcl：achieve robot positioning in a two-dimensional map.

On the basis of the above two packages, ROS provides a complete navigation framework.

The robot only needs to publish the necessary sensor information and navigation goal position,
and ROS can complete the navigation function. In this framework, the move_base package
provides the main operation and interactive interface of navigation. In order to ensure the
accuracy of the navigation path, the robot also needs to accurately locate its own position. This
part of the function is implemented by the amcl package.

5.1.1 Move_base package

Move_base is a package for path planning in ROS, which is mainly composed of the following two
planners.

(1) Global path planning (global_planner). Global path planning is to plan the overall path
according to a given goal position and global map. In navigation, Dijkstra or A* algorithm is used
for global path planning, and the optimal route from the robot to the goal position is calculated as
the robot's global path.

(2) Local real-time planning (local_planner). In practice, robots often cannot strictly follow the
global path. So it is necessary to plan the path that the robot should travel in each cycle according
to the map information and obstacles that may appear near the robot at any time. So that it
conforms to the global optimal path as much as possible.

5.1.2 Amcl package

Autonomous positioning means that the robot can calculate its position on the map in any state.
ROS provides developers with an adaptive (or kld sampling) Monte Carlo localization (amcl), which
is a probabilistic positioning system that locates mobile robots in 2D. It implements an adaptive
(or KLD-sampling) Monte Carlo localization, using particle filtering to track the pose of the robot on
a known map.

af://n385
af://n392
af://n396

5.1.3 Introduction of DWA_planner and TEB_planner

DWA_planner

The full name of DWA is Dynamic Window Approaches. The algorithm can search for multiple
paths to avoid and travel, select the optimal path based on various evaluation criteria (whether it
will hit an obstacle, the time required, etc.), and calculate the linear velocity and angular velocity
during the driving cycle to avoid collisions with dynamic obstacles.

TEB_planner

The full name of "TEB" is Time Elastic Band Local Planner. This method performs subsequent
modifications to the initial trajectory generated by the global path planner to optimize the robot's
motion trajectory. It falls under the category of local path planning. During the trajectory
optimization process, the algorithm takes into account various optimization goals, which include
but are not limited to minimizing overall path length, optimizing trajectory execution time,
ensuring a safe distance from obstacles, passing through intermediate path points, and complying
with the robot's dynamics, kinematics, and geometric constraints. The "TEB method" explicitly
considers the dynamic constraints of time and space during the robot's motion. For instance, it
considers limitations on the robot's velocity and acceleration.

5.2 Limo navigation

Note: In the four-wheel differential mode, the omnidirectional wheel mode and the track
mode, the file run for the navigation is the same.

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

（1）First launch the LiDAR and enter the command in the terminal:：

（2）Launch the navigation and enter the command in the terminal:

Note: If it is Ackermann motion mode, please run:

After launching successfully, the rviz interface will be shown in the figure below:

ros2 launch limo_bringup limo_start.launch.py

ros2 launch limo_bringup limo_nav2.launch.py

ros2 launch limo_bringup limo_navigation_ackerman.launch

af://n398
af://n403

Note: If you need to customize the opened map, please open the
limo_navigation_diff.launch file to modify the parameters. The file directory is:
~/agilex_ws/src/limo_ros/limo_bringup/launch. Please modify map02 to the name of the
map that needs to be replaced.

（3）After launching the navigation, it may be observed that the laser-scanned shape does not
align with the map, requiring manual correction. To rectify this, adjust the actual position of the
chassis in the scene displayed on the rviz map.

Use the rviz tools to designate an approximate position for the vehicle, providing it with a
preliminary estimation. Subsequently, use the handle tool to remotely rotate the vehicle until
automatic alignment is achieved. Once the laser shape overlaps with the scene shape on the map,
the correction process is concluded. The operational steps are outlined as follows:

The correction is completed:

（4）Set the navigation goal point through 2D Nav Goal.

A purple path will be generated on the map. Switch the handle to command mode, and Limo will
automatically navigate to the goal point.

（5）Multi-point navigation

Click the button in the red box to enter multi-point navigation mode.

Click Nav2 Goal and add points on the map. After adding points, click the button in the red box to
start navigation.

Parameter name Parameter index

The distance between the imaging
centers of the left and right infrared
cameras

40mm

Depth distance 0.3-3m

Power consumption

The average power consumption of the whole
machine <2W;
The peak value at the moment the laser is turned
on <5W (duration: 3ms);
Typical standby power consumption <0.7W.

Depth map resolution
640X400@30FPS
320X200@30FPS

Color map resolution
1920X1080@30FPS
1280X720@30FPS
640X480@30FPS

6 Visual mapping and navigation

6.1 Introduction and use of ORBBEC®Dabai

ORBBEC®Dabai is a depth camera based on binocular structured light 3D imaging technology. It
mainly includes a left infrared camera (IR camera1), a right infrared camera (IR camera2), an IR
projector, and a depth processor. The IR projector is used to project the structured light pattern
(speckle pattern) to the goal scene, the left infrared camera and the right infrared camera
respectively collect the left infrared structured light image and the right infrared structured light
image of the goal, and the depth processor executes the depth calculation algorithm and outputs
the depth image of the goal scene after receiving the left infrared structured light image and the
right infrared structured light image.

af://n430
af://n431

Parameter name Parameter index

Accuracy
6mm@1m (81% FOV area participates in accuracy
calculation*)

Depth FOV H 67.9° V 45.3°

Color FOV H 71° V43.7° @1920X1080

Delay 30-45ms

Data transmission USB2.0 or above

Supported operating system Android / Linux / Windows7/10

Power supply mode USB

Operating temperature 10°C ~ 40°C

Applicable scene
Indoor / outdoor (specifically subject to
application scenes and related algorithm
requirements)

Dustproof and waterproof Basic dustproof

Safety Class1 laser

Dimensions (mm) Length 59.6 X width 17.4 X thickness 11.1mm

After knowing the basic parameters of ORBBEC®Dabai, start to practice：

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c

First ,start the ORBBEC®Dabai camera. Run the following command:

Open rqt_image_view:

ros2 launch astra_camera dabai.launch.py

ros2 run rqt_image_view rqt_image_view

6.2 Introduction of rtabmap algorithm

RTAB-Map (Real-Time Appearance-Based Mapping) is an algorithm for Simultaneous Localization
and Mapping (SLAM) that aims to achieve a balance between real-time performance and map
quality. RTAB-Map is a graph-based SLAM system that can build dense 3D maps at runtime (real-
time).

Some of the key features and components of RTAB-Map are as follows:

1. Real-time Performance: RTAB-Map is specifically designed to operate in real-time
applications, such as robot navigation and augmented reality systems. It employs an
algorithm that minimizes computational requirements while achieving fast and accurate map
construction and positioning, even with limited computing resources.

2. Feature-based SLAM: RTAB-Map utilizes visual and inertial sensor data to perform feature
matching. It extracts key points and descriptors from consecutive frames to enable
simultaneous localization and mapping (SLAM), even without precise motion models. This
feature allows for robust mapping and localization in dynamic environments.

3. Environment Awareness: RTAB-Map incorporates environment awareness techniques to
enhance map quality. It takes into account depth information, parallax, and other
environmental factors, which is particularly beneficial in scenarios with less texture or
repetitive structures. This improves the reliability and accuracy of the generated maps.

4. Loop Detection and Closed-loop Optimization: RTAB-Map includes loop detection
mechanisms to identify previously visited areas within the map. It then employs optimization
techniques to correct previous trajectories and maps based on the loop closure information.
This ensures consistency in the map representation and reduces errors over time.

5. RGB-D Sensor Support: RTAB-Map provides direct support for RGB-D sensors, such as the
Microsoft Kinect. By utilizing depth information from these sensors, RTAB-Map enhances the
accuracy and density of the generated maps. This support for RGB-D sensors enables more
detailed and comprehensive mapping capabilities.

af://n495

6.3 Rtabmap algorithm mapping

Note: Before running the command, please make sure that the programs in other terminals
have been terminated. The termination command is: Ctrl+c.

Note: The speed of limo should be low in the process of mapping. If it is too fast, the effect of
mapping will be affected.

（1）First launch the LiDAR. Enter the command in the terminal:

（2）Launch the camera. Enter the command in the terminal:

（3）Launch the mapping mode of the rtabmap algorithm. Enter the command in the terminal:

After building the map, the program can be terminated directly. The built map will be
automatically saved in the main directory as a .ros file named rtabmap.db. The .ros folder is
hidden and can be displayed using the Ctrl+h command.

6.4 Rtabmap algorithm navigation

Note: Before running the command, please make sure that the programs in other terminals
have been terminated. The termination command is: Ctrl+c.

（1）First launch the LiDAR. Enter the command in the terminal:

（2）Launch the camera. Enter the command in the terminal:

ros2 launch limo_bringup limo_start.launch.py

ros2 launch astra_camera dabai.launch.py

ros2 launch limo_bringup limo_rtab_rgbd.launch.py

ros2 launch limo_bringup limo_start.launch.py

af://n509
af://n522

（3）Start the mapping mode of rtabmap algorithm. Enter the command in the terminal:

（4）Start the navigation algorithm. Enter the command in the terminal:

（5）Because visual positioning is used, there is no need for calibration when using rtabmap
navigation. Users can directly start setting the target points and proceed with navigation. The
operational steps are shown in the figure.

A green path will be generated in the map. Switch the handle to command mode, and Limo will
automatically navigate to the goal point.

ros2 launch astra_camera dabai.launch.py

ros2 launch limo_bringup limo_rtab_rgbd.launch.py localization:=true

ros2 launch limo_bringup limo_rtab_nav2.launch.py

af://n537

6 Vision Module

6.1 Vision-based Line Following

Code Logic

1. Firstly, the camera needs to be initialized. The image information is obtained by subscribing
to the messages published by the camera, and the image is converted to the OpenCV format.

2. The obtained image is preprocessed, including operations such as grayscale conversion,
Gaussian blur, and edge detection.

3. The preprocessed image is binarized to convert it into a black and white binary image.

4. Morphological operations, such as dilation, erosion, and opening, are applied to the binary
image to enhance line detection.

5. Hough transform is used to detect lines, which are then drawn on the image.

6. By analyzing the slope and position of the detected lines, the direction in which the robot
needs to turn is determined, and the robot is controlled to move towards the target direction.

Function Implementation

Launch the camera.

Place the car in the sandbox and activate the vision-based line following function.

ros2 launch astra_camera dabai.launch.py

ros2 run limo_visions detect_line

af://n537
af://n538

6.2 Color Tracking

Visual color tracking is an object detection and tracking technique based on image processing,
which allows real-time tracking and localization of objects of specific colors.

Code Logic

1. Initialize ROS node and camera subscriber: First, you need to initialize a ROS node using the
rclcpp library in ROS2, and create a subscriber to subscribe to image messages. Convert the
image messages from ROS to OpenCV format using the cv_bridge library.

2. Define color range and mask: In this code, we will take the blue color target as an example for
tracking. First, define a range object in OpenCV to represent the color range. Then, use the
inRange function in OpenCV to convert the image to a binary mask, which filters out the
target region for further processing.

3. Detect and draw bounding boxes: The target region in the mask may contain noise and other
non-target regions. To identify the exact position of the target region, you can use the
findContours function in OpenCV to find the contours and use the boundingRect function to
calculate the bounding box of the target region. Then, use the rectangle function to draw the
bounding box on the original image.

4. Publish the target position: Lastly, you can use a publisher in ROS2 to publish the target
position to other nodes for further control and navigation.

Function Implementation

Launch the camera.

Place the colored block within the view range of the limo and activate the color tracking function:

ros2 launch astra_camera dabai.launch.py

ros2 run limo_visions object_detect

af://n559

6.3 QR Code Tracking

A QR code is a graphic composed of black and white elements, which records data and symbol
information. It is arranged on a plane according to specific rules and geometric shapes in a two-
dimensional direction. In its encoding, it cleverly utilizes the concepts of "0" and "1" bit streams,
which form the fundamental basis of internal computer logic. Several geometric shapes
corresponding to binary are used to represent textual and numerical information, enabling
automatic reading through image input devices or photoelectric scanning equipment to achieve
automated information processing.

QR code shares common features with barcode technology, such as each coding system having its
own specific character set, each character occupying a designated width, and incorporating
specific verification functions. Additionally, it has the capability to automatically identify different
lines of information and process changes resulting from graphic rotation.

In ROS2, the aruco_ros function package is utilized for QR code identification. aruco_ros is a
function package developed based on OpenCV, written in C++, and provides a C++ interface.

Generate QR code:

URL to generate QR code: http://chev.me/arucogen/; you can generate different QR codes
according to your own needs

The QR code used in this example is:

Function Implementation

Launch the camera.

Place the QR code within the field of view of Limo, and activate the QR code recognition function.

Launch the QR code recognition function.

ros2 launch astra_camera dabai.launch.py

ros2 launch aruco_ros single.launch.py

ros2 run limo_visions move_to_ar

af://n577
http://chev.me/arucogen/

6.4 Traffic light recognition

Code Logic:

1. Initialize the ROS2 node and create an image subscriber and image publisher.

2. Read the image and convert it to HSV color space.

3. Define the color range of red and green and apply it to the image through the inRange
function to obtain a binary image.

4. Perform morphological operations on binary images to remove noise and fill holes.

5. Find the contours in the image through the findContours function, and find the circumscribed
circle of each contour through the minEnclosingCircle function.

6. For each circumscribed circle, calculate its area and center coordinates. If the area is larger
than the threshold and the center of the circle is within the predefined traffic light area, it can
be marked as a traffic light.

7. Draw the circumscribed circle of the traffic light in the original image and publish it to the
ROS2 topic.

8. Repeat the above steps in a loop and wait for the next image to arrive.

Function Implementation：

Launch the camera.

Place the QR code within the field of view of Limo, and activate the traffic light recognition
function.

ros2 launch astra_camera dabai.launch.py

ros2 run limo_visions detect_traffic

af://n593

Appendix 1 Remote desktop connection
1. Download and install NoMachine

First download the corresponding software on personal computer.

Download link: https://www.nomachine.com/download.

Download the corresponding version according to your computer's operating system and
architecture. Connect limo and computer to the same WIFI.

2. Connect to wifi

Open the seagull door on the right side of limo, find the USB-HUB module, and connect the
keyboard and mouse to limo. The position of the USB-HUB module is as shown in the figure
below:

af://n618
af://n619
https://www.nomachine.com/download
af://n623

After the keyboard and mouse are successfully connected, select the wifi that needs to be
connected.

Enter the password of wifi:

3. Connect to Limo remotely

Select connection object

af://n631

Username：agilex Password：agx

Select to save the password.

Always select the default option : OK.

Brand of the group

Official Distributor

gr@generationrobots.com

+33 5 56 39 37 05
www.generationrobots.com

https://www.linkedin.com/company/generation-robots/
https://twitter.com/GenerationRobot
https://www.youtube.com/@Generationrobots
mailto:gr@generationrobots.com
mailto:david.denis@generationrobots.com
http://www.generationrobots.com/en/

	1 LIMO Introduction
	1.1 LIMO Robot
	1.2 Component list
	1.3 Tech specifications
	1.4 Operation instructions

	2 Instructions on Chassis Electrical Information
	2.1 Battery and charging
	2.1.1 Basic battery information
	Battery precautions

	2.1.2 Charging
	Charging precautions:

	3 Chassis Driver File
	3.1 Driver file structure
	3.2 Msg files
	3.3 Srv files
	3.4 Action files
	3.5 Limo topic

	4 LiDAR Mapping
	4.1 Introduction and use of LiDAR
	4.2 Cartographer mapping
	4.2.1 Introduction of cartographer algorithm
	4.2.2 Operation of cartographer mapping

	5 LiDAR Navigation
	5.1 Navigation framework
	5.1.1 Move_base package
	5.1.2 Amcl package
	5.1.3 Introduction of DWA_planner and TEB_planner

	5.2 Limo navigation

	6 Visual mapping and navigation
	6.1 Introduction and use of ORBBEC®Dabai
	6.2 Introduction of rtabmap algorithm
	6.3 Rtabmap algorithm mapping
	6.4 Rtabmap algorithm navigation

	6 Vision Module
	6.1 Vision-based Line Following
	6.2 Color Tracking
	6.3 QR Code Tracking
	6.4 Traffic light recognition

	Appendix 1 Remote desktop connection
	1. Download and install NoMachine
	2. Connect to wifi
	3. Connect to Limo remotely

