
LIMO Usage and Development Manual
1 LIMO Introduction

1.1 Preface
1.2 Component list
1.3 Tech specifications
1.4 Nvidia Jetson Nano introduction
1.5 Component name
1.6 Function highlights
1.7 Mode switching method
1.8 Operation instructions
1.9 Remote desktop connection

1.9.1 Download and install NoMachine
1.9.2 Connect to wifi
1.9.2 Connect to Limo remotely

2 Instructions on Chassis Electrical Information
2.1 Battery and charging

2.1.1 Basic battery information
Battery precautions

2.1.2 Charging
Charging precautions:

2.2 Operational environment and safety precautions
2.3 Power supply topology
2.4 Communication topology

3 Chassis Driver Drive
3.1 C++ chassis driver
3.2 Python chassis driver

4 Chassis Kinematics Analysis
4.1 Four-wheel differential motion mode
4.2 Track motion mode
4.3 Ackermann motion mode
4.4 Mecanum motion mode

5 LiDAR Mapping
5.1 Introduction and use of LiDAR
5.2 GMAPPING mapping

5.2.1 Introduction of gmapping algorithm
5.2.2 Operation of gmapping mapping

5.3 Cartographer mapping
5.3.1 Introduction of cartographer algorithm
5.3.2 Operation of cartographer mapping

6 LiDAR Navigation
6.1 Navigation framework

6.1.1 Move_base package
6.1.2 Amcl package
6.1.3 Introduction of DWA_planner and TEB_planner

6.2 Limo navigation
6.3 Limo path inspection

7 Depth Camera + LiDAR Mapping
7.1 Introduction and use of ORBBEC®Dabai
7.2 Introduction and use of realsense
7.3 View information of depth camera
7.2 Introduction of rtabmap algorithm
7.3 Rtabmap algorithm mapping
7.4 Rtabmap algorithm navigation

8 Vision Module

8.1 Recognize text
8.1.1 Function Introduction
8.1.2 Running function

8.2 Identifying traffic lights
8.2.1 Function introduction
8.1.2 Running function

8.3 Lifting barrier control
8.3.1 Function introduction
8.1.2 Run function

9 Voice module
9.1 Speech converted to text

9.1.1 Function introduction
9.1.2 Running function

9.2 Voice control
9.2.1 Function Introduction
9.2.2 Running function

Appendix
Appendix 1. Three Views
Appendix 2. Basic Operating Commands

2.1 Directory operating commands
(1) Directory switch: cd
(2) Directory view: ls
(3) Create directory: mkdir
(4) Show hidden directory: Ctrl+h
(5)Terminate program: Ctrl+c

2.2 ROS commonly used commands
（4）Node running command

Appendix 3. ROS Framework
3.1 ROS architecture design
3.2 Computation graph

3.2.1 Nodes
3.2.2 Message
3.2.3 Topic
3.2.4 Service

3.3 File system
3.4 Open source community
3.5 Communication mechanism

Appendix 4. ROS Basics
4.1 Workspace

4.2.3 Create a package
4.3 Write package to control limo

4.3.2 How to create a Subscriber
4.3.3 Compile package
4.3.4 Run Publisher and Subscriber
4.4 ROS common components
4.4.2 Rviz
4.4.3 Qt toolbox

Appendix 5 System Burning
5.1 Download and install balenaetcher
5.2 Download the image to be burned
5.3 Instructions on software usage

Appendix 6 Firmware Upgrade
1. Enter the firmware upgrade mode
2. Grant LimonTest_Nano software running permissions
3. Launch the software and start to upgrade the firmware

Appendix 7 Parameter Configuration of Navigation Package

Version Update information Editor

1.0.0 First version opened to customer Agilex ROS TEAM

Name Quantity

LIMO high-end body x1

Battery x1

7.1 Configurable parameters in the gmapping package
7.2 Configurable parameters in the cartographer package
7.3 Configurable parameters in the amcl package
7.4 Configurable parameters in DWA
7.5 Configurable parameters in TEB

Appendix 8 Supporting Courses
8.1 Free course video
8.2 Free courseware

LIMO Usage and Development Manual
中文 | EN

Version: 1.0.0

1 LIMO Introduction

1.1 Preface

The AgileX LIMO robot is the world's first ROS development platform that integrates four motion
modes. It serves as a versatile learning platform that can adapt to a wide range of scenarios and
meet industry application requirements. It is well-suited for robot education, function research
and development, and product development.

With its innovative mechanical design, the LIMO robot enables swift transitions between four-
wheel differential, Ackermann, tracks, and Mecanum wheel motion modes. Additionally, it allows
for the establishment of multi-scenario simulation teaching and testing using professional sand
tables. Equipped with high-performance sensors such as NUC, EAI T-mini Pro Lidar, and depth
cameras, the LIMO robot performs well in precise autonomous positioning, SLAM mapping, route
planning, autonomous obstacle avoidance, and traffic light recognition.

At the same time, AgileX Robotics and Gu Yueju, the domestic ROS community teaching pioneer,
are committed to combining enterprise employment and industry application needs to create a
new ROS boutique course based on the LIMO-developed car to help colleges and universities in
scientific research and teaching, so that students can meet higher technical requirements for
industry applications.

1.2 Component list

af://n2
af://n22
af://n23
af://n27

Name Quantity

Charger x1

Mecanum wheel x4

APP_Nexus X1

Track x2

Cross screwdriver 1

Screw M3x12mm，3pcs；M3x5mm，20pcs

Items Parameters Values

Mechanical

Overall dimension 322*220*251mm

Wheelbase 200mm

Tread 175mm

Dead load 4.8kg

Load

1kg（Four-wheel differential）

4kg（Ackermann mode）

4kg（Wheat wheel）

Minimum ground clearance 24mm

Drive type Hub motor (4x14.4W)

Performance

No-load max. speed 1m/s

Ackermann minimum turning
radius

0.4m

Work environment -10~+40℃

Max. climbing capacity 40°（under track mode）

1.3 Tech specifications

af://n60

System

Power interface DC（5.5x2.1mm)

OS Ubuntu18.0

IMU HI226

CPU
ARM 64-bit 4-core@1.43GHz （Cortex-
A57）

GPU 128-core NVIDIA Maxwell @921MHz

Battery 5200mAh 12V

Working time 40min

Stand-by time 2h

Communication interface WIFI,Bluetooth

Sensor

LIDAR EAI X2L

Depth camera DaBai/RealSense D435

IPC NVIDIA Jetson Nano（4G）

Voice module
iFlytek Voice Assistant/Google
Assistant

Speaker Left and right dual channels（2x2W)

USB-HUB TYPE-C x1，USB2.0 x2

Front display
1.54 inch 128x64 white OLED display
screen

Rear display 7 inch 1024x600 IPS touch screen

Control
Control mode Mobile APP，command control

Mobile APP Bluetooth，maximum distance 10m

GPU 128-Core Maxwell

CPU Quad-core ARM57 @1.43Ghz

Memory 4GB 64Bit LPDDR4 25.6GB/s

1.4 Nvidia Jetson Nano introduction

Nvidia Jetson Nano is a powerful small computer designed to support entry-level edge AI
applications and devices. Relying on the comprehensive NVIDIA JetPack™ SDK, it contains
acceleration libraries for deep learning, computer vision, graphics, multimedia, etc. Equipped in
the limo high-end version, it can be used for the expansion of robot navigation and positioning,
image processing, voice recognition etc.

af://n64

GPU 128-Core Maxwell

Storage Micro SD卡（default）

Video encode 4K@30| 4 X 1080p@30 | 9 X 720p@30(H.264/H.265)

Video decode 4K@60| 2X 4K@30 | 8X 1080p@30 | 18 X 720p@30(H.264/H.265)

Camera 2 X MIPI CSI-2 DPHY lanes

Networking Gigabit Ethernet, external expansion of M.2 Key E interface

Display HDMI X 1, DP X 1

USB 4 X USB 3.0, USB 2.0 Micro-B

Extended interface GPIO，I2C，I2S，SPI，UART

1.5 Component name

10

1

9

8

5

2

3

4

7

6

①　WIFI/Bluetooth antenna；

②　Depth camera；

③　Front display；

④　EAI X2L LiDAR;

⑤　Hub motor；

⑥　RGB light；

⑦　Four-wheel differential/Ackermann mode switching latch；

⑧　Power display；

af://n100

⑨　Left speaker；

⑩　Left seagull door；

13

15

11

14

12

⑪　Rear display；

⑫　Battery door；

⑬　Switch；

⑭　Right seagull door；

⑮　Right speaker；

16

⑯　USB-HUB；

17

18

19

⑰　Voice module；

⑱　IPC NVIDIA Jetson Nano（4G）；

⑲　Battery；

1.6 Function highlights

（1）Four hub motors are used to save the internal space of the vehicle body, and the four modes
of Ackermann, four-wheel differential, track and Mecanum wheel can be quickly switched on one
vehicle body;

①Ackermann mode：

A geometry designed to solve the problem of wheels on the inside and outside of a turn needing
to trace out circles of different radii in the steering of vehicles. A vehicle designed according to
Ackermann steering geometry, when turning along a curve, use the four-link equal crank to make
the steering angle of the inside wheel about 2 to 4 degrees larger than that of the outside wheel,
so that the centers of the four wheel paths roughly meet on the extension line of the rear axle;
and then the wheels instantly turn to the center, allowing the vehicle to turn smoothly.

af://n124

②Four-wheel differential mode：

Four-wheel drive, which can realize in-situ auto-rotation, but it will cause serious tire wear; please
do not auto-rotate in-situ for a long time；

③Track mode：

It has good off-road performance and can climb 40° slopes and small steps；

④Mecanum wheel mode：

The omni-directional motion equipment based on Mecanum wheel technology can realize
forward, lateral, oblique, rotation and combinations of motion modes.

（2）Indication of vehicle light status：

The two vehicle lights are RGB LEDs, and 5 high-contrast colors are used for indicator lights, and
the rest of the colors can be customized by the developer;

Color Status

Red flashing Low battery/master control alarm

Red Software shut down

Green Ackermann mode

Yellow Four-wheel differential/track mode

Blue Mecanum wheel mode

（3）Doors on both sides can be expanded to reserve a Type-C interface and two USB2.0
interfaces for convenient debugging;

（4）The battery can be removed and replaced;

（5）Reserve rich expansion holes:

Eight M3 screw holes and two 3.2mm wide notches are reserved on the roof;

72.00 mm52.00 mm

10.00 mm

65.00 mm

Four M3 screw holes are reserved for the two doors to expand horizontally to obtain a larger
mounting platform;

163.79 mm

73.00 mm

Four M3 screw holes are reserved at the front and rear of the underbody.

12.00 mm

10.00 mm 10.00 mm

55.00 mm55.00 mm

12.00 mm

（6）Rich interactive experience:

Camera, LiDAR, voice module, dual speakers and front display can provide rich interactive
experience.

1.7 Mode switching method

（1）Switch to Ackermann mode:

First, pull out the latches on both sides. And then turn them 30 degrees clockwise making the

longer lines on the two latches point in front of the car. In this way, they will be stuck.

When the vehicle light turns green and stays on, the switch is successful.

af://n174

（2）Switch to four-wheel differential mode:

Pull up the two latches, and turn 30 degrees clockwise to make the shorter line on the two latches

points to the front of the vehicle body . At this point, it is in insertion state. Fine-tune the tire

angle to align the hole so that the latch is inserted. When the vehicle light turns yellow and stays
on, the switch is successful.

（3）Switch to track mode:

In the four-wheel differential mode, put the track on directly. It is recommended to put the track
on the rear wheel with a small space first. And in the track mode, please lift the doors on both
sides to prevent scratches.

（4）Switch to Mecanum wheel mode:

First remove the hubcaps and tires, leaving only the hub motor. Then ensure that the small roller
of each Mecanum wheel is facing the center of the body. Install the Mecanum wheel with the
M3*5 screw in the package. Finally, adjust to the Mecanum wheel mode with remote control /APP.

Note: When switching to Mecanum wheel mode, make sure that each Mecanum wheel is
installed at the angle shown above.

1.8 Operation instructions

（1）Long press the switch to start (short press to pause the program). Observe the electricity
meter, and charge or replace the battery in time when the last red light is on.

2.电量表

1.开关

af://n192

Latch status Color of light Current mode

Push down
Yellow 4-wheel diff or Track

Blue Macanum wheel

Pull up Green Ackerman

（2）Observe the status of the front latch and the color of the vehicle light to determine the
current mode:

（3）Instructions on APP remote control

1. First download the APP--Nexus provided by our company on the mobile phone. The
download method is as follows:

 IOS download: search for Nexus in AppStore and download it.

For Android, scan the following QR code:

Download link：https://www.pgyer.com/lbDi

https://www.pgyer.com/lbDi

2. After downloading the App successfully, open the App; as shown in Figure 1-1, connect to the
Bluetooth of LIMO_xxxxxx; click the Bluetooth icon on the upper left of the Android phone to
enter the Bluetooth scanning interface

3. Remote control limo

Left lever: control limo forward and backward.

Right lever: Control limo to turn left and right.

Middle progress bar: speed value display.

Mode switching: There are three modes in total, Ackermann motion mode: ackermann; four-wheel
differential motion mode: 4wd; Mecanum motion mode: mailun

Ackermann: You need to manually switch LIMO to Ackermann mode, which is mainly used to
calibrate the zero point, and control forward and backward as well as rotation angle;

4wd: You need to manually switch LIMO to the four-wheel differential mode, which mainly
controls forward and backward, rotation direction and rotation in place;

Mailun: You need to manually switch LIMO to the Mecanum wheel mode, which mainly controls
forward and backward, rotation direction, and rotation in place.

4. Instructions on APP setting

Language switch：Switch between English and Chinese by clicking the button English/Simplified
on the right.

Left-romte min speed：Set the minimum speed of LIMO.

Left-romte max speed：Set the maximum speed of LIMO.

right-romte min speed：Set the minimum rotation speed of LIMO.

right-romte max speed：Set the maximum rotation speed of LIMO.

veer calibration：To set the zero point calibration, first click the + sign, and then click Confirm
Verify. When the calibration is successful, a reminder box will pop up: Successful calibration.

BlueTooth：Click to pop up the Bluetooth scanning interface.

Bluetooth management: Click random to generate any name named after LIMO_xxxx, confirm OK
and modify the Bluetooth name of the vehicle synchronously. Note that the Bluetooth will be
disconnected at this time and will remind you to reconnect the Bluetooth. After reconnecting the
Bluetooth, you can continue to control the vehicle; when the app is started again, the Bluetooth
name of the vehicle has been modified successfully.

1.9 Remote desktop connection

1.9.1 Download and install NoMachine

First download the corresponding software on personal computer.

Download link: https://www.nomachine.com/download.

Download the corresponding version according to your computer's operating system and
architecture. Connect limo and computer to the same WIFI.

1.9.2 Connect to wifi

Open the seagull door on the right side of limo, find the USB-HUB module, and connect the
keyboard and mouse to limo. The position of the USB-HUB module is as shown in the figure
below:

af://n234
af://n235
https://www.nomachine.com/download
af://n239

After the keyboard and mouse are successfully connected, connect to wifi through the following
operations, and select the wifi that needs to be connected.

Enter the password of wifi:

1.9.2 Connect to Limo remotely

Select connection object

Click Yes

af://n247

Username：agilex

Password：agx

Select to save the password.

Always select the default option : OK.

Items Rated parameters

Typical capacity 5200mAH

Minimum capacity 5000mAH

Nominal voltage 11.1V

Charge cut-off voltage 12.6V

Discharge cut-off voltage 8.25V

Maximum continuous discharge current 10A

2 Instructions on Chassis Electrical Information

2.1 Battery and charging

2.1.1 Basic battery information

LIMO is equipped with a 12V battery with two interfaces. They are the yellow battery output
interface and the black battery charging interface.

The parameters of battery are as follow：

Battery precautions

In order to ensure the safety of transportation and storage, the battery supplied with LIMO is
not necessarily fully charged.

Please do not wait until the battery is fully exhausted before charging. And please charge the
battery in time when LIMO’s low battery level alarm is on;

LIMO will still generate a quiescent standby current when it is turned off. To prevent the
battery from over-discharging, please disconnect the battery from the vehicle body when you
do not use LIMO for a long time.

Please do not put the battery in fire or heat up the battery, and please do not store the
battery in high-temperature environment. The best temperature for battery storage is
-10℃~40℃.

LIMO must be charged with the original factory-equipped or certified battery.

2.1.2 Charging

LIMO is equipped with a 12.6V 2A charger by default to meet customers’ charging demand. There
is an indicator light on the charger to show the charging status.

When charging, please turn off the vehicle and remove the battery, and separate the battery
output interface from the vehicle body.

Connect the charging connector of the charger to the battery, and then turn on the charger's
power supply for charging.

af://n259
af://n260
af://n261
af://n286
af://n300

Charger indicator light’s color Charger status

Red Charging

Green flashing Almost fully charged

Green Fully charged

When fully charged, please separate the battery from the charger first, and then disconnect
the charger.

The charger status is as follows:

Charging precautions:

It is forbidden to use non-original chargers to charge the battery, and do not charge the
battery below 0°C.

The battery must be separated from LIMO’s vehicle body when charging, and it is forbidden
to supply power to LIMO while charging the battery.

When the indicator light of the charger turns green, it indicates that the charging is complete.
But to extend the battery usage life, the charger will trickle charge with a current of 0.1A for
about 0.5 hours.

At present, it takes about 2.5 hours for the battery to reach a fully charged state from 8.25V,
and the fully charged voltage of the battery is about 12.6V.

2.2 Operational environment and safety precautions

The operating temperature of LIMO is -10°C ~ 40°C. Please do not use it in an environment
with a temperature lower than -10°C or higher than 40°C;

The relative humidity requirements of LIMO's operational environment: maximum 80%,
minimum 30%;

Please do not use it in an environment with corrosive and flammable gas or in an
environment near flammable substances;

LIMO is not waterproof, so please do not use it in an environment with rain, snow, or water;

It is recommended that the altitude of the operational environment should not exceed
1000M, and the temperature difference between day and night should not exceed 25°C;

In case of any doubts during use, please operate according to the relevant instruction manual
or consult related technical personnel;

Without technical support and permission, please do not personally modify the internal
equipment structure.

af://n325
af://n336

2.3 Power supply topology

LIMO's battery can provide a maximum current of 10A to power the chassis, Nano, and
sensors. When the system detects that the operating current is greater than 10A, it will enter
an overcurrent protection mode to protect the battery and motor.

The total output current of the three USB interfaces of USB HUB is 0.5A at most.

2.4 Communication topology

af://n353
af://n361

Folder Stored files

include Library files called by the driver

launch Startup files of the driver

The LIMO chassis has a built-in Bluetooth 5.0 module that can be connected to the APP on
the mobile phone to realize the remote control function.

LIMO and Nano are directly connected through a UART interface, and Nano can control the
chassis through this interface.

USB HUB provides 2 USB interfaces and 1 Type C interface; all 3 interfaces work under the
USB2.0 protocol.

The rear display screen is connected to the USB HUB through the USB2.0 interface and has a
touch function.

3 Chassis Driver Drive
The mobile chassis needs to be driven by a program to achieve the navigation of Limo. The chassis
driver of Limo has the C++ version and the Python version. Both two versions can control the
movement of the Limo.

3.1 C++ chassis driver

The folder where the C++ version of the driver is located is ~/agilex_ws/src/limo_ros/limo_base,
which can be accessed by the following command.

The following is the file list of the limo_base package:

There are four folders under limo_base, namely include, launch, msg, and src. The include folder
stores the library files called by the driver; the launch folder stores the startup files of the driver;
the msg folder stores the message files needed by the driver; the src folder stores the driver
source code.

cd agilex_ws/src/limo_ros/limo_base

├── limo_base

 ├── CMakeLists.txt

 ├── include

 │ ├── limo_driver.h

 │ ├── limo_protocol.h

 │ └── serial_port.h

 ├── launch

 │ └── limo_base.launch

 ├── msg

 │ └── LimoStatus.msg

 ├── package.xml

 └── src

 ├── limo_base_node.cpp

 ├── limo_driver.cpp

 └── serial_port.cpp

af://n374
af://n376

Folder Stored files

msg Message files needed by the driver

src Driver source code

Name Function

connect() Connect the chassis

readData()
Read the data, and get the information feedback from the
chassis

processRxData() Receive serial data

parseFrame() Process serial data

sendFrame() Send serial data

setMotionCommand() Set limo’s control mode

enableCommandedMode() Enable control mode

publishOdometry() Publish odometer data

publishLimoState() Publish limo’s state information

publishIMUData() Publish IMU data

processErrorCode() Error detection

You can control the forward movement of limo with a simple command.

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

1. Launch the chassis. Open a terminal, and enter the command in the terminal:

2. Enter the control command. Open a terminal, and enter the command in the terminal:

Note: Copy the entire command to the terminal and enter it, and don’t enter it manually.

After entering the command in the terminal, limo will walk a short distance before stopping.

Functions used in the driver source code:

roslaunch limo_base limo_base.launch

rostopic pub /cmd_vel geometry_msgs/Twist "linear:

 x: 0.2

 y: 0.0

 z: 0.0

angular:

 x: 0.0

 y: 0.0

 z: 0.0"

Name Function

twistCmdCallback() Publish speed control data

normalizeAngle() Output a normal angle

degToRad() Turn the angle to radian

convertInnerAngleToCentral() Convert inner angle to central angle

convertCentralAngleToInner() Convert central angle to inner angle

File name Function

init.py Declare the files to be used

limomsg.py Drive to the required messages

limo.py Main program, used to drive limo

3.2 Python chassis driver

The driver of Limo (Python version) is uploaded to pypi, and it can be downloaded through the pip
command. The installation directory of the program is ~/.local/lib/python3.6/site-packages/pylimo.
Its file list is:

The Python version of the code is relatively concise. There are only three files consisting of the
driver. The function of init.py is to declare the files to be used, limomsg.py is the required
messages files, and limo.py is the main program and its function is driving Limo.

A script is provided to call the driver. The directory of it is agilex_ws/src/limo_ros/limo_base/script,
and the name is limomove.py.

This directory can be accessed with the following command. Open a terminal and enter the
command in the terminal:

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Run the script. Open the terminal, and enter the command in the terminal:

After entering the command in the terminal, limo will walk a certain distance before stopping.

├── __init__.py

├── limomsg.py

├── limo.py

└── __pycache__

 ├── __init__.cpython-36.pyc

 ├── limo.cpython-36.pyc

 └── limomsg.cpython-36.pyc

cd agilex_ws/src/limo_ros/limo_base/script

python3 limomove.py

af://n463

Name Function

EnableCommand() Control enable

SetMotionCommand() Set motion command

GetLinearVelocity() Get linear velocity

GetAngularVelocity() Get angular velocity

GetSteeringAngle() Get steering angle

GetLateralVelocity() Get lateral velocity

GetControlMode() Get control mode

GetBatteryVoltage() Get battery level

GetErrorCode() Get error code

GetRightWheelOdem() Get left wheel odometer

GetLeftWheelOdem() Get right wheel odometer

GetIMUAccelData() Get IMU acceleration

GetIMUGyroData() Get gyroscope data

GetIMUYawData() Get IMU course angle

GetIMUPichData() Get pitch angle

GetIMURollData() Get roll angle

Functions used in the driver:

4 Chassis Kinematics Analysis
Mobile robots are incredibly popular right now, from large autonomous vehicles and the more
conventional Automated Guided Vehicles (AGVs) that see extensive industrial use, such as those
for intelligent logistics and automated transport, down to the small smart cars on Taobao. These
mobile robots come with various chassis types, including two-wheel, three-wheel, and four-wheel
designs. For instance, unmanned vehicles typically use a four-wheel Ackermann steering model,
while standard AGVs operate with a two-wheel differential drive system. In college robotics
competitions, it's common to see three-wheel omnidirectional and four-wheel omnidirectional
wheel chassis. Some AGVs even feature a four-wheel skid-steer chassis, adding to the variety that
might seem quite bewildering. This section will introduce the four motion modes of Limo from a
kinematic perspective.

af://n541

4.1 Four-wheel differential motion mode

A four-wheel differential motion robot can be simplified as a model shown in the figure below.
Four wheels are driven by four separate motors. The robot can be controlled to move forward,
backward, and steer only by controlling the velocity of the four wheels.

We give the robot a reference coordinate system. The red arrow is the positive direction of the X
axis, the blue arrow is the positive direction of the Y axis, the Z axis is perpendicular to the screen
outward along the origin, the coordinate origin is the center of mass of the robot, and the
coordinate system satisfies the Ampere’s right-hand rule. When the velocity (size + direction) of
the four wheels is the same, the robot can move forward and backward. When the velocities of the
four wheels are not the same, the robot will turn.

Once the robot turns, it means that there is a turning center, which is the point ICR in the figure
below. Taking the left front wheel as an example, the relative velocity direction of the contact point
A of the wheel and the ground is shown in the figure. The resultant velocity direction and the line
segment A-ICR are perpendicular to each other, and the tire can only rotate along the longitudinal
component velocity direction. The velocity resolution shows that there is also a lateral component
velocity along the wheel axis (motor axis).

af://n543

Due to the varying lateral velocities of the four tires, the robot generates rotational movements,
whereas the uniform longitudinal velocities contribute to its forward or backward movements. The
combined effect of these components results in the robot executing a circular trajectory around
the ICR.

When the robot turns, the angular velocity of the tires on both sides is the same. The inner tire has
a smaller turning radius so that the inner linear velocity is smaller. The outer tire has a larger
turning radius so that the outer linear velocity is greater. That is, when the velocity on the right
side is greater, it will turn left. Similarly, when the velocity on the left side is greater, it will turn
right.

Moreover, it can be seen from the figure above that the tires on the same side of the robot have
the same Vx (longitudinal component velocity), while the tires at the upper (lower) end have the
same Vy (lateral component velocity). To induce a self-rotation of the vehicle, it is needed to
maintain equal velocities in both wheels on one side (either left or right) with a consistent
direction while ensuring that the wheels on the opposite side (right or left) also have equal
velocities but in the reverse direction.

We can try to control limo in four-wheel differential mode. First, adjust limo to four-wheel
differential mode, pull up the two latches, and turn 30 degrees clockwise to make the shorter line

on the two latches points to the front of the vehicle body . At this point, it is in insertion state.

Fine-tune the tire angle to align the hole so that the latch is inserted. When the vehicle light turns
yellow, the switch is successful.

After the mode switch is successful, run the following command, and we can launch the keyboard
or handle to control.

Launch chassis control node

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Launch keyboard control node

4.2 Track motion mode

In the track differential mode, a single-sided track can be equivalently regarded as an "infinite
number of small wheels", and the "speed" of the single-sided "infinite number of small wheels" is
the same. Therefore, the steering mode of the track differential mode is the same as that of the
four-wheel differential mode, which is also slide steering.

Specifically, the track differential motion and the four-wheel differential motion are achieved by
controlling the relative velocity of the tracks (or wheels) on both sides, but there are also
differences between them: the shear and pressure distribution generated by the track on the
ground are different from those of the wheels. This difference has little effect when it comes to
wheel speed control. When the wheel speeds are inconsistent, we can refer to the following
simplified model.

roslaunch limo_base limo_base.launch

roslaunch limo_bringup limo_teletop_keyboard.launch

af://n560

ICR is the center of motion rotation, CENTER refers to the geometric center of the robot, while
COM represents the center of mass. During turning, the velocity of the inner track is lower
compared to the outer track. To make the vehicle rotate around itself, the left (right) side track
should have the same velocity and direction, while the track velocity on the right (left) side should
be the same as the other side, but with an opposite direction.

In the four-wheel differential mode, put the track on directly. Iit is recommended to put the track
on the rear wheel with small space first. And in the track mode, please lift the doors on both sides
to prevent scratches.

After the replacement is completed, run the following command, and we can launch the keyboard
or handle to control.

Launch chassis control node:

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Launch keyboard control node:

4.3 Ackermann motion mode

Ackermann steering structure is the steering method of modern cars, which can solve the problem
of different steering angles of the left and right steering wheels caused by the different steering
radii of the left and right steering wheels when the car is steering.

Begin with the simplified model of Ackermann motion mode. Similar to differential motion, when
all four wheels are given the same velocity (magnitude + direction), the robot is capable of moving
forward and backward. However, the differentiating factor lies in turning. To achieve this, the
Ackermann steering geometry is employed to calculate the turning radius based on the angle of
deflection of the two front wheels.

The geometric center of the robot is denoted by the point CENTER, whereas the midpoint of the
rear rod is referred to as the point BASE. In this configuration, the robot executes a circular motion
around the ICR, which corresponds to the minimum turning radius. From the diagram, the
deflection angles of the two front wheels are not equal, with the difference between these angles
(θA-θB) being known as the Ackermann angle. If the robot employs four-wheel drive in the
Ackermann motion mode, the inner wheel's velocity will be lower than that of the outer wheel
during turning.

roslaunch limo_base limo_base.launch

roslaunch limo_bringup limo_teletop_keyboard.launch

af://n572

Ackermann can be further simplified as the model of the bicycles we usually ride. The orange part
in the figure above is the robot’s equivalent bicycle model. Compared with the differential motion
mode, the Ackermann motion mode has a turning radius limitation, and the mobile robot cannot
achieve spin, that is, the turning radius cannot be zero.

First pull up the latches on both sides, and turn 30 degrees clockwise to make the longer line on
the two latches points to the front of the vehicle body, and then they will be stuck. When the light
turns green, the switch is successful, and the limo is switched to Ackermann motion mode.

After the mode switch is successful, run the following command, and we can launch the keyboard
or handle to control.

After the switch is successful, run the following command, and we can launch the keyboard or
handle to control.

Launch chassis control node:

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Launch keyboard control node:

Note: When the vehicle cannot go straight in Ackermann mode, the steering gear calibration is
required.

roslaunch limo_base limo_base.launch

roslaunch limo_bringup limo_teletop_keyboard.launch

4.4 Mecanum motion mode

The Mecanum wheel is a special kind of wheel, which is composed of a hub and rollers: the hub is
the main support of the entire wheel, and the rollers are passively moving drums (small wheels)
mounted on the hub. The two form a complete big wheel. The angle between the hub axis and the
roller shaft on the market can be roughly divided into 30 degrees, 45 degrees, and 60 degrees. In
order to meet the geometric relationship of omnidirectional motion, the edge of the hub adopts a
bending process to provide mounting holes for the shaft of the roller.

Assuming that the wheel rotates counterclockwise, the force analysis of the Mecanum wheel is
carried out. In the coordinate system in the above figure, red represents the x axis, green
represents the y axis, blue represents the z axis, the roller coordinate system is represented by a
dotted line, and the hub coordinate system is represented by a solid line; the yellow arrow
indicates the force analysis of the Mecanum wheel and roller; the blue arrow indicates the speed
direction.

af://n587

The rollers on the periphery of the Mecanum wheel are in contact with the ground. When the
Mecanum wheel rotates around the hub axle, the rollers will generate frictional force Ff with the
ground, and the force direction is the positive direction of the Y axis of the hub coordinate system.
The orthogonal decomposition of Ff along the roller coordinate system shows that F1 is along the
negative direction of the Y axis of the roller, and the size is √2/2Ff, and FII is along the positive
direction of the X axis of the roller, and the size is √2/2Ff. F1 is the rolling friction of the roller,
which causes wear to the roller and cannot change the direction of movement of the tire. FⅡ will
force the roller to move in the positive direction of the X axis, so FⅡ is static friction, which
promotes the roller to move relative to the ground.

Different wheel arrangements also require different control methods. The omnidirectional
movement of the Mecanum wheel is simplified to the model shown in the figure above. The blue
arrow indicates the direction of wheel movement, and the orange arrow represents the force
analysis of the Mecanum wheel. Combining the forces, we will find that the mobile robot has only
one forward force, so the robot will move forward at this time.

Combine the friction of each tire based on the previous four-wheel differential motion mode, the
robot can move in any direction. Below are some examples of tire conditions when moving in
different directions.

First remove the hub cover and tires, leaving only the hub motor, and then make sure that the
small rollers of each Mecanum wheel are facing the center of the vehicle body. Use the M3*5
screws in the package to install the Mecanum wheel. The remote control/APP needs to be
adjusted to the Mecanum wheel mode during remote operation.

When the remote control handle is in the four-wheel differential control mode, when channel 8 is
in the lowest gear, it switches to the Mecanum wheel control mode, and when it is in the middle
and upper gear, it switches back to the differential mode;

Launch chassis control node:

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Launch keyboard control node:

There are many motion modes of mobile robots, and each has its advantages and disadvantages.
In real scenes, we can choose the most suitable motion mode according to the characteristics and
needs. The following table summarizes the advantages and disadvantages of the four motion
modes, for reference only.

roslaunch limo_base limo_base.launch

roslaunch limo_bringup limo_teletop_keyboard.launch

Mode
Four-wheel
differential

Track Ackermann Mecanum

Advantages

Good motion
performance
and simple
control

Strong
adaptability,
good off-road
performance,
and suitable
for a variety of
complex sites

Same as the
motion mode
of a car, which
facilitates in-
depth
research on
autonomous
driving

Good mobility,
and
omnidirectional
motion

Disadvantages

Slippage
during
steering, and
large tire
wear

Large sliding
steering
resistance, and
large wear on
the track

Limited
turning radius,
and low tire
wear

High site
requirements,
non-continuous
rollers, vibration
during
movement, and
large wear

Items Minimum Default Maximum Unit Remarks

Ranging
frequency

/ 3000 / Hz
3000 ranging times per
second

Scanning
frequency

5 6 8 Hz

PWM signal needs to be
connected, and the
recommended frequency
is 6Hz.

Ranging
range

0.12 / 8 m
Indoor environment, and
objects with 80%
reflectivity

Scanning
angle

/ 0-360 / ° /

Absolute
tolerance

/ 2 / cm When ranging ≤1m

5 LiDAR Mapping

5.1 Introduction and use of LiDAR

 YDLIDAR X2L LiDAR is a 360-degree two-dimensional ranging product developed by Shenzhen EAI
Technology Co., Ltd. (EAI). This product is based on the principle of trigonometric ranging and is
equipped with related optical, electrical, and algorithm design to achieve high-frequency and high-
precision distance measurement. While measuring distance, the mechanical structure rotates 360
degrees and continuously obtains angle information, thereby achieving 360 degrees scanning
distance measurement, and output point cloud data of the scanning environment.

af://n625
af://n626

Items Minimum Default Maximum Unit Remarks

Relative
tolerance

/ 3.5% / / When 1m < ranging ≤ 6m

Pitch angle 0.25 1 1.75 ° /

Angle
resolution

0.60 (5Hz)
0.72
(6Hz)

0.96 (8Hz) °
Different scanning
frequency

Its usage is as follows:

Launch a new terminal and enter the command:

After launching successfully, the terminal will output the following log information, as shown in the
figure:

Then launch a new terminal and enter the command in the terminal:

After the rviz visualization software runs successfully, the green data displayed is the laser data
scanned by LiDAR.

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

roslaunch limo_bringup lidar_rviz.launch

At this time, set the remote control/App to remote control mode and the remote control car will
move. The laser data will also change accordingly.

5.2 GMAPPING mapping

5.2.1 Introduction of gmapping algorithm

Gmapping is a widely adopted open-source SLAM algorithm that operates within the filtering
SLAM framework. It effectively uses wheel odometry data and does not heavily rely on high-
frequency laser LiDAR scans. When constructing a map of a smaller environment, Gmapping
requires minimal computational resources while maintaining high accuracy. Here the ROS
encapsulated GMapping package is used to achieve the mapping for Limo.

5.2.2 Operation of gmapping mapping

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Note: The speed of limo should be slow in the process of mapping. If the speed is too fast, the
effect of mapping will be affected.

First, open a new terminal and enter the command to launch the LiDAR.

Then launch the gmapping mapping algorithm. Open another new terminal, and enter the
command:

After launching successfully, the rviz visualization tool will start up. The interface is shown in the
figure.

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

roslaunch limo_bringup limo_gmapping.launch

af://n702
af://n703
af://n705

At this time, the handle can be set to remote control mode and control limo mapping.

After building the map, run the following command to save the map to the specified directory:

1. Switch to the directory where you need to save the map, save the map to
~/agilex_ws/src/limo_ros/limo_bringup/maps/, and enter the command in the terminal:

2. After switching to /agilex_ws/limo_bringup/maps, continue to enter the command in the
terminal:

Note: map1 is the name of the saved map, and duplicate names should be avoided when saving
the map

5.3 Cartographer mapping

5.3.1 Introduction of cartographer algorithm

Cartographer is a set of SLAM algorithms based on image optimization launched by Google. The
main goal of this algorithm is to achieve low computing resource consumption and achieve the
purpose of real-time SLAM. The algorithm is mainly divided into two parts. The first part is called
Local SLAM. This part establishes and maintains a series of Submaps through each frame of the
Laser Scan, and the so-called submap is a series of Grid Maps. The second part called Global
SLAM, is to perform closed-loop detection through Loop Closure to eliminate accumulated errors:
when a submap is built, no new laser scans will be inserted into the submap. The algorithm will
add the submap to the closed-loop detection.

cd ~/agilex_ws/src/limo_ros/limo_bringup/maps/

rosrun map_server map_saver –f map1

af://n725
af://n726

5.3.2 Operation of cartographer mapping

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Note: The speed of limo should be slow in the process of mapping. If the speed is too fast, the
effect of mapping will be affected.

Launch a new terminal and enter the command:

Then start the cartographer mapping algorithm. Open another new terminal and enter the
command:

After launching successfully, the rviz visualization interface will be shown as the figure below:

After building the map, it is necessary to save it. Three following commands need to be entered in
the terminal:

（1）After completing the trajectory, no further data should be accepted.

（2）Serialize and save its current state.

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

roslaunch limo_bringup limo_cartographer.launch

rosservice call /finish_trajectory 0

af://n728

（3）Convert pbstream to pgm and yaml

Generate the corresponding pgm and yaml, and put them in the directory:

${HOME}/agilex_ws/src/limo_ros/limo_bringup/maps/mymap.pbstream

Note: During the process of mapping, some warnings will appear in the terminal. This is caused by
the excessive speed and the delayed data processing, which can be ignored.

6 LiDAR Navigation
Two laser mapping methods were used above. Then use the map just built to navigate.

6.1 Navigation framework

The key to navigation is robot positioning and path planning. For these, ROS provides the
following two packages.

（1）move_base：achieve the optimal path planning in robot navigation.

（2）amcl：achieve robot positioning in a two-dimensional map.

On the basis of the above two packages, ROS provides a complete navigation framework.

rosservice call /write_state "{filename:

'${HOME}/agilex_ws/src/limo_ros/limo_bringup/maps/mymap.pbstream'}"

rosrun cartographer_ros cartographer_pbstream_to_ros_map -

map_filestem=${HOME}/agilex_ws/src/limo_ros/limo_bringup/maps/mymap.pbstream -

pbstream_filename=${HOME}/agilex_ws/src/limo_ros/limo_bringup/maps/mymap.pbstream

-resolution=0.05

af://n748
af://n750

The robot only needs to publish the necessary sensor information and navigation goal position,
and ROS can complete the navigation function. In this framework, the move_base package
provides the main operation and interactive interface of navigation. In order to ensure the
accuracy of the navigation path, the robot also needs to accurately locate its own position. This
part of the function is implemented by the amcl package.

6.1.1 Move_base package

move_base is a package for path planning in ROS, which is mainly composed of the following two
planners.

(1) Global path planning (global_planner). Global path planning is to plan the overall path
according to a given goal position and global map. In navigation, Dijkstra or A* algorithm is used
for global path planning, and the optimal route from the robot to the goal position is calculated as
the robot's global path.

(2) Local real-time planning (local_planner). In practice, robots often cannot strictly follow the
global path. So it is necessary to plan the path that the robot should travel in each cycle according
to the map information and obstacles that may appear near the robot at any time. So that it
conforms to the global optimal path as much as possible.

6.1.2 Amcl package

Autonomous positioning means that the robot can calculate its position on the map in any state.
ROS provides developers with an adaptive (or kld sampling) Monte Carlo localization (amcl), which
is a probabilistic positioning system that locates mobile robots in 2D. It implements an adaptive
(or KLD-sampling) Monte Carlo localization, using particle filtering to track the pose of the robot on
a known map.

6.1.3 Introduction of DWA_planner and TEB_planner

DWA_planner

The full name of DWA is Dynamic Window Approaches. The algorithm can search for multiple
paths to avoid and travel, select the optimal path based on various evaluation criteria (whether it
will hit an obstacle, the time required, etc.), and calculate the linear velocity and angular velocity
during the driving cycle to avoid collisions with dynamic obstacles.

TEB_planner

The full name of "TEB" is Time Elastic Band Local Planner. This method performs subsequent
modifications to the initial trajectory generated by the global path planner to optimize the robot's
motion trajectory and belongs to local path planning. In the process of trajectory optimization, the
algorithm has a variety of optimization goals, including but not limited to: overall path length,
trajectory running time, distance to obstacles, passing intermediate path points, and compliance
with robot dynamics, kinematics, and geometric constraints. The“TEB method” explicitly considers
the dynamic constraints of time and space in the state of motion, for example, the velocity and
acceleration of the robot are limited.

6.2 Limo navigation

Note: In the four-wheel differential mode, the omnidirectional wheel mode and the track mode,
the file run for the navigation is the same.

af://n757
af://n761
af://n763
af://n768

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

（1）First launch the LiDAR and enter the command in the terminal:

（2）Launch the navigation and enter the command in the terminal:

Note: If it is Ackermann motion mode, please run:

After launching successfully, the rviz interface will be shown in the figure below:

Note: If you need to customize the opened map, please open the limo_navigation_diff.launch file
to modify the parameters. The file directory is: ~/agilex_ws/src/limo_ros/limo_bringup/launch.
Please modify map02 to the name of the map that needs to be replaced.

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

roslaunch limo_bringup limo_navigation_diff.launch

roslaunch limo_bringup limo_navigation_ackerman.launch

（3）After launching the navigation, it may be observed that the laser-scanned shape does not
align with the map, requiring manual correction. To rectify this, adjust the actual position of the
chassis in the scene displayed on the rviz map. Use the rviz tools to designate an approximate
position for the vehicle, providing it with a preliminary estimation. Subsequently, use the handle
tool to remotely rotate the vehicle until automatic alignment is achieved. Once the laser shape
overlaps with the scene shape on the map, the correction process is concluded. The operational
steps are outlined as follows:

The correction is completed:

（4）Set the navigation goal point through 2D Nav Goal.

A purple path will be generated on the map. Switch the handle to command mode, and Limo will
automatically navigate to the goal point.

6.3 Limo path inspection

（1）First launch the LiDAR and enter the command in the terminal:

（2）Launch the navigation and enter the command in the terminal:

Note: If it is Ackermann motion mode, please run:

（3）Launch the path recording function. Open a new terminal, and enter the command in the
terminal:

After the path recording is completed, terminate the path recording program, and enter the
command in the terminal: Ctrl+c.

（4）Launch the path inspection function. Open a new terminal, and enter the command in the
terminal:

Note: Switch the handle to command mode.

roslaunch limo_bringup limo_start.launch pub_odom_tf:=false

roslaunch limo_bringup limo_navigation_diff.launch

roslaunch limo_bringup limo_navigation_ackerman.launch

roslaunch agilex_pure_pursuit record_path.launch

roslaunch agilex_pure_pursuit pure_pursuit.launch

af://n789
af://n803

Parameter name Parameter index

The distance between the imaging
centers of the left and right infrared
cameras

40mm

Depth distance 0.3-3m

Power consumption

The average power consumption of the whole
machine <2W;
The peak value at the moment the laser is turned
on <5W (duration: 3ms);
Typical standby power consumption <0.7W.

Depth map resolution
640x400@30FPS
320x200@30FPS

Color map resolution
1920x1080@30FPS; 1280x720@30FPS;
640x480@30FPS

Accuracy
6mm@1m (81% FOV area participates in accuracy
calculation*)

Depth FOV H 67.9° V 45.3°

Color FOV H 71° V43.7° @1920X1080

Delay 30-45ms

Data transmission USB2.0 or above

Supported operating system Android / Linux / Windows7/10

Power supply mode USB

Operating temperature 10°C ~ 40°C

7 Depth Camera + LiDAR Mapping
Limo has two versions, one with RealSense D435 and the other with ORBBEC®Dabai. Both depth
cameras can realize the mapping and navigation function of vision + LiDAR. The following will
introduce how to use two depth cameras.

7.1 Introduction and use of ORBBEC®Dabai

ORBBEC®Dabai is a depth camera based on binocular structured light 3D imaging technology. It
mainly includes a left infrared camera (IR camera1), a right infrared camera (IR camera2), an IR
projector, and a depth processor. The IR projector is used to project the structured light pattern
(speckle pattern) to the goal scene, the left infrared camera and the right infrared camera
respectively collect the left infrared structured light image and the right infrared structured light
image of the goal, and the depth processor executes the depth calculation algorithm and outputs
the depth image of the goal scene after receiving the left infrared structured light image and the
right infrared structured light image.

af://n803
af://n805

Parameter name Parameter index

Applicable scene
Indoor / outdoor (specifically subject to
application scenes and related algorithm
requirements)

Dustproof and waterproof Basic dustproof

Safety Class1 laser

Dimensions (mm) Length 59.6 X width 17.4 X thickness 11.1mm

 Model Intel Realsense D435

Basic features Application scenes Outdoor/indoor

Measuring distance About 10m

Depth shutter type Global shutter/3um X 3um

Whether the IMU is supported No

Depth camera In-depth technology Active infrared

FOV 86° x 57°（±3°）

Minimum depth distance 0.105m

After knowing the basic parameters of ORBBEC®Dabai, start to practice：

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c

First ,start the ORBBEC®Dabai camera. Run the following command:

The following warnings will appear during running. This is because some parameters in the driver
are not supported by the camera and can be ignored.

7.2 Introduction and use of realsense

Binocular vision sensors have a wide range of application scenes and requirements in the robot
vision measurement, visual navigation and other robotics industries. At present, we have selected
the common vision sensors in the scientific research and education industry. The Intel RealSense
Depth Camera D435 is equipped with a global image shutter and a wide field of view, which can
effectively capture and stream the depth data of moving objects, thereby providing highly
accurate depth perception for mobile prototypes.

roslaunch astra_camera dabai_u3.launch

af://n868

 Model Intel Realsense D435

Depth resolution 1280 x 720

Maximum measuring distance About 10m

Depth frame rate 90 fps

RGB Resolution 1280 x 800

FOV 69.4° × 42.5°（±3°）

Frame rate 30fps

Other information Dimensions 90mm x 25mm x 25mm

Interface type USB-C 3.1

After knowing the basic parameters of realsense, start to practice:

 Note: Before running the command, please make sure that the programs in other terminals have
been terminated.The termination command is: Ctrl+c.

First start the realsense camera and run the following command:

When the following log information appears in the terminal, the camera is launched successfully.

7.3 View information of depth camera

After successfully opening the depth camera, launch rviz to view the images captured by the depth
camera and the depth information collected.

Open a new terminal and enter the command:

roslaunch realsense2_camera rs_camera.launch

af://n941

Then add the Image component to see the picture taken by the camera. The operation steps are
as follows.

Select camera_link in fixed frame.

rviz

Fill in the corresponding topic in the image component to get the rgb picture.

After completing the above operations, the picture taken by the camera in the Image window will
be shown.

Click add and add the DepthCloud component to view point cloud data

Select camera_link in fixed frame and select the corresponding topic in DepthCloud component.

Show depth map:

7.2 Introduction of rtabmap algorithm

The rtabmap algorithm provides an appearance-based positioning and mapping solution
independent of time and scale. It's aimed at solving the problem of online closed-loop detection in
large-scale environments. The idea is to solve some real-time limitation problems. Closed-loop
detection uses only a limited number of positioning points while being able to access the
positioning points of the entire map when needed.

7.3 Rtabmap algorithm mapping

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Note: The speed of Limo should be low in the process of mapping. If it is too fast, the effect of
mapping will be affected.

（1）First launch the LiDAR and enter the command in the terminal:

（2）Launch realsense and enter the command in the terminal:

Note: If limo is equipped with ORBBEC®Dabai, please enter the command:

（3）Launch the mapping mode of the rtabmap algorithm. Enter the command in the terminal:

Note: If limo is equipped with ORBBEC®Dabai, please enter the command:

roslaunch limo_bringup limo_start.launch pub_odom_tf:=true

roslaunch realsense2_camera rs_camera.launch align_depth:=true

 roslaunch astra_camera dabai_u3.launch

roslaunch limo_bringup limo_rtabmap_realsense.launch

af://n960
af://n962

（4）Launch rviz to view the mapping effect, and enter the command in the terminal:

When the screen as shown in the rviz interface appears, the rtabmap algorithm mapping mode is
successfully started.

After building the map, the program can be terminated directly. The built map will be
automatically saved in the main directory as a .ros file named rtabmap.db. The .ros folder is
hidden and can be displayed using the Ctrl+h command.

7.4 Rtabmap algorithm navigation

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

（1）First launch the LiDAR. Enter the command in the terminal:

（2）Launch the camera. Enter the command in the terminal:

Note: If limo is equipped with ORBBEC®Dabai, please enter the command:

（3）Launch the positioning mode of the rtabmap algorithm, and enter the command in the
terminal:

roslaunch limo_bringup limo_rtabmap_orbbec.launch

 roslaunch limo_bringup rtabmap_rviz.launch

roslaunch limo_bringup limo_start.launch pub_odom_tf:=true

roslaunch realsense2_camera rs_camera.launch align_depth:=true

 roslaunch astra_camera dabai_u3.launch

af://n980

Note: If limo is equipped with ORBBEC®Dabai, please enter the command:

（4）Launch move_base and enter the command in the terminal:

Note: If it is Ackermann motion mode, please run:

（5）Launch rviz to view the mapping effect. Enter the command in the terminal:

（6）Because visual positioning is used, there is no need for calibration when using rtabmap
navigation. Users can directly start setting the target points and proceed with navigation. The
operational steps are shown in the figure.

A green path will be generated in the map. Switch the handle to command mode, and Limo will
automatically navigate to the goal point.

roslaunch limo_bringup limo_rtabmap.launch localization:=true

roslaunch limo_bringup limo_rtabmap_orbbec.launch localization:=true

roslaunch limo_bringup limo_navigation_rtabmap.launch

roslaunch limo_bringup limo_navigation_rtabmap_ackerman.launch

 roslaunch limo_bringup rtabmap_rviz.launch

8 Vision Module

8.1 Recognize text

8.1.1 Function Introduction

Obtain the rgb image of the camera, and perform grayscale and binarization processing on the
image. Then use the pytesseract text recognition library to recognize the English letters or
numbers of the image, and post the recognition result to the detect_word_reslut topic.

8.1.2 Running function

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c

Take Realsense as an example, launch node management, and enter the command in the
terminal:

Enter the command and start the text recognition.

Execute rostopic echo /detect_word_reslut to view the recognized results.

roscore

rosrun vision detect_node.py

rostopic echo /detect_word_reslut

af://n1003
af://n1004
af://n1005
af://n1007

8.2 Identifying traffic lights

8.2.1 Function introduction

After the traffic lights are detected through darknet_ros, the traffic lights must be identified and
positioned in the three-dimensional space to generate the relative position of the object to the
camera. This method can only realize the identification and positioning of the traffic lights, and
cannot obtain the status of the traffic lights. Depth camera is needed, and its recognition distance
depends on the depth camera’s range.

8.1.2 Running function

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Take Realsense as an example, launch the realsense depth camera and enter the command in the
terminal:

Note: If limo is equipped with ORBBEC®Dabai, please enter the command:

Launch yolo_v3 and enter the command in the terminal:

Launch the traffic light recognition function:

 roslaunch realsense2_camera rs_camera.launch

 roslaunch astra_camera dabai_u3.launch

 roslaunch darknet_ros yolo_v3_tiny.launch

af://n1017
af://n1018
af://n1020

8.3 Lifting barrier control

8.3.1 Function introduction

LIMO can figure out the distance from the lifting barrier by detecting the QR code on it. When the
distance is less than 0.3m，LIMO will send a message to the topic /chatter_updown to control
the lifting barrier up and down.

8.1.2 Run function

Note：Use Ctrl+C command to end all the processes before running the below commands.

Take ORBBEC®Dabai as an example. Start realsense RGBD camera. Terminal command is：

Start the detection function of QR code, the command is：

 roslaunch vision traffic_light_located.launch

 roslaunch astra_camera dabai_u3.launch

roslaunch detect_ros agx_ar_pose.launch

af://n1031
af://n1032
af://n1034

When pub num : 1 shown in the Terminal，the lifting barrier will be up . Then the LIMO will have
three seconds to pass through the lifting barrier.

9 Voice module

9.1 Speech converted to text

9.1.1 Function introduction

The voice is recorded into a wav file through the external sound card of the nano, and the voice
recognition is achieved with the voice library pocketsphinx, which can be recognized offline. This
function has a higher recognition rate for English, but a poorer recognition rate for Chinese.

9.1.2 Running function

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

Enter the following command in the terminal. When “recording” appears in the terminal, start to
record the voice. After 3 seconds, the recording is complete, and “Done” will appear on the
terminal.

rosrun voice demo_record_voice.py

af://n1042
af://n1043
af://n1044
af://n1046

After the voice is recorded, enter the command in the terminal:

9.2 Voice control

9.2.1 Function Introduction

Control Limo to move ahead, move back, turn right, and turn left by saying ahead, back, right and
left to Limo.

9.2.2 Running function

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

1. Launch the chassis node, and adjust the handle to the command mode after the chassis
node is launched.

2. Launch the voice control node. After launching, the interface shown in the figure below will
appear. Enter 1 and press Enter to enter the voice recording mode and control limo. Enter q
to quit.

rosrun voice demo_voice2word.py output.wav

 roslaunch limo_base limo_base.launch

rosrun voice voice_ctr_node.py

af://n1055
af://n1056
af://n1058

Appendix

Appendix 1. Three Views

251 mm

220 mm

af://n1069
af://n1070

322 mm

251 mm

220 mm

322 mm

Appendix 2. Basic Operating Commands

2.1 Directory operating commands

(1) Directory switch: cd

① cd / switch to the root directory

② cd /usr switch to the usr directory under the root directory

③ cd ../ switch to the upper level directory or cd ..

④ cd ~ switch to the home directory

⑤ cd - switch to the last visited directory

(2) Directory view: ls

① ls: view all directories and files in the current directory

② ls -a: view all directories and files in the current directory (including hidden files)

③ ls -l or ll: list view all directories and files in the current directory (list view, which displays more
information)

af://n1075
af://n1076
af://n1077
af://n1083

④ ls /dir: view all directories and files in the specified directory, like: ls /usr

(3) Create directory: mkdir

① mkdir aaa: create a directory named aaa in the current directory

② mkdir /usr/aa: create a directory named aaa in the specified directory

(4) Show hidden directory: Ctrl+h

In the folder, you can display the hidden folders in the folder by Ctrl+h

(5)Terminate program: Ctrl+c

Enter the command Ctrl+c in the terminal to forcefully terminate the program being executed

2.2 ROS commonly used commands

(1) Compile command: catkin_make

Used to compile packages in the entire workspace

(2) Initialize workspace: catkin_init_workspace

Used to initialize the workspace when creating the workspace for the first time

(3) Create package: catkin_create_pkg

Used to create a package, and its syntax is:

（4）Node running command

 ① rosrun is used to run the .cpp files and the .py files, and its syntax is:

② roslaunch is used to run .launch files. In the launch files, the .cpp files and the .py files can
be called at the same time, and its syntax is:

Appendix 3. ROS Framework

3.1 ROS architecture design

The ROS architecture is as shown in the figure below, which can be divided into three layers: OS
layer, middle layer and application layer.

 catkin_create_pkg <package_name> [depend1] [depend2] [depend3]...

 rosrun package_name node_name

 roslaunch package_name node_name

af://n1088
af://n1091
af://n1093
af://n1095
af://n1103
af://n1109
af://n1110

（1） OS layer

ROS is not an operating system in the traditional sense. It cannot run directly on computer
hardware like Windows and Linux. Instead, it needs to rely on the Linux system. So at the OS layer,
we can directly use the Ubuntu operating system with the best official support of ROS, or use
macOS, Arch, Debian and other operating systems.

(2) Middle layer

Linux is a general system and does not provide special middleware for robot development, so ROS
has done a lot of work in the middle layer, the most important of which is the communication
system based on TCPROS/UDPROS. The ROS communication system is based on the TCP/UDP
network, on which it is re-encapsulated, that is, TCPROS/UDPROS. The communication system
uses publish/subscribe, client/server and other models to realize data transmission through
multiple communication mechanisms.

In addition to the communication mechanism of TCPROS/UDPROS, ROS also provides an in-
process communication method——Nodelet, which can provide a more optimized data
transmission method for multi-process communication, which is suitable for applications that
have higher requirements for real-time data transmission.

On top of the communication mechanism, ROS provides a large number of libraries related to
robot development, such as data type definition, coordinate transformation, motion control, etc.,
which can be provided to the application layer.

(3) Application layer

At the application layer, ROS needs to run a manager——Master, responsible for managing the
normal operation of the entire system. A large number of robot application packages are shared
in the ROS community. The modules in these packages run as nodes and use ROS standard input
and output as interfaces. Developers do not need to pay attention to the internal implementation
mechanism of the modules, but only need to understand the interface rules to achieve reuse,
which greatly improves development efficiency.

From the perspective of system implementation, ROS can also be divided into three layers as
shown in the following figure: file system, computation graph, and open source community.

3.2 Computation graph

From the perspective of the computation graph, the functional modules of the ROS system
software run independently in units of nodes, which can be distributed in multiple same or
different hosts, and are connected through an end-to-end topology when the system is running.

3.2.1 Nodes

Nodes are processes that perform computing tasks. A system generally consists of multiple nodes,
which can also be called "software modules." The introduction of the node concept makes the
ROS-based system more vivid at runtime: When many nodes are running at the same time, it is
easy to draw the end-to-end communication into the node diagram as shown below, in which the
process is the node, and the end-to-end connection is the connecting line between the nodes.

3.2.2 Message

The most important communication mechanism between nodes is the message communication
based on the publish/subscribe model. Each message is a strict data structure, which supports
standard data types (integer, floating point, Boolean, etc.), as well as nested structures and arrays
(similar to the structure of C language), and can also be independently defined by the developer
according to requirements.

3.2.3 Topic

Messages are delivered in a Publish/Subscribe manner (see the figure below). A node can publish
a message for a given Topic (called Talker), or it can follow a topic and subscribe to a specific type
of data (called Listener). Talkers and Listeners do not know each other's existence. There may be
multiple nodes in the system simultaneously publishing or subscribing to the same topic.

af://n1123
af://n1125
af://n1128
af://n1130

3.2.4 Service

Although the topic-based publish/subscribe model is a very flexible communication mode, it is not
suitable for the two-way synchronous transmission mode. In ROS, we call this synchronous
transmission mode Service, which is based on the Client/Server model and contains two parts of
communication data types: one for request and the other for response, similar to a Web server.
Different from the topic, only one node is allowed to provide the specified naming service in ROS.

3.2.5 Master

In order to manage the above concepts as a whole, there needs to be a controller in the system to
make all nodes execute in an orderly manner. This is the ROS Master. ROS Master provides
registration lists and search functions for other computation graphs through remote procedure
call (RPC), helps ROS nodes to find and establish connections with each other, and also provides a
parameter server for the system to manage global parameters. ROS Master is a manager. Without
it, nodes will not be able to find each other, exchange messages, or call services, and the entire
system will crash. This shows its importance in the ROS system.

3.3 File system

Similar to the operating system, ROS organizes all files according to certain rules, and files with
different functions are placed in different folders, as shown in Figure 2-5.

Package: The package is the basic unit of ROS software, including ROS nodes, libraries,
configuration files, etc.

Package Manifest: Each package contains a package manifest named package.xml, which is used
to record the basic information of the package, including author information, license information,
dependent options, compilation flags, etc.

Meta Package: In the new version of ROS, the concept of the original Stack is upgraded to "Meta
Package", whose main function is to organize multiple packages for the same purpose. For
example, a ROS navigation meta package will contain multiple packages such as modeling,
positioning, and navigation.

Meta Package Manifest: Not shown in the figure below. It is similar to the package manifest. The
difference is that the meta package manifest may contain packages that need to be relied upon at
runtime or tags for declaring some references.

af://n1133
af://n1137

Message type: Message is the communication information published/subscribed between ROS
nodes. You can use the message type provided by ROS, or you can use the .msg file to customize
the required message type in the msg folder of the package.

Service type: The service type defines the request and response data type under the ROS
client/server communication model. You can use the service types provided by the ROS system;
you can also use the .srv file to define in the srv folder of the package.

Code: The folder used to place the source code of the package node.

3.4 Open source community

The resources in the ROS open source community are very rich, and the following software and
knowledge can be shared through the network (see Figure 2-9).

Distribution: Similar to the Linux distribution, the ROS distribution includes a series of packages
with version numbers that can be installed directly. This makes ROS’s software management and
installation easier, and it can maintain a unified version number through software collections.

Repository: ROS relies on the open source code on the shared network, and different
organizations can develop or share their own robotic software.

ROS wiki: The main forum for documenting ROS information. Everyone can register, log in to the
forum, upload their own development documents, update, and write tutorials.

Mailing List: The ROS mailing list is the main channel for communicating ROS updates, as well as
various questions about ROS development.

ROS Answers: ROS Answers is a website for inquiring about ROS related questions. Users can
submit their own questions on this website and get answers from other developers.

Blog: Publish news, pictures, and videos in the ROS community (http：//www.ros.org/news).

af://n1148
http://www.ros.org/news

3.5 Communication mechanism

ROS is a distributed framework that provides users with communication services between
multiple nodes (processes). All software functions and tools are based on this distributed
communication mechanism, so the ROS communication mechanism is the lowest and most core
technology. In most application scenes, although we don't need to pay attention to the
implementation mechanism of the underlying communication, understanding its related
principles will definitely help us make better use of ROS in the development process. The three
core communication mechanisms of ROS are introduced below.

3.5.1 Topic communication mechanism

Topic is used most frequently in ROS, and its communication model is also more complicated. As
shown in the figure below, there are two nodes in ROS: one is Talker, and the other is Listener.
Two nodes publish and subscribe to the same topic separately. There is no mandatory
requirement for the startup sequence. Here, assuming that Talker starts first, it can be divided into
the seven steps shown in the figure to analyze the detailed process of establishing
communication.

1.Talker registration

Talker starts and uses RPC to register Talker's information with ROS Master through port 1234,
including the topic name of the published message; ROS Master will add the registration
information of the node to the registration list.

2. Listener registration

The Listener starts and also registers Listener’s information with ROS Master through RPC,
including the topic name that needs to be subscribed.

3. ROS Master performs information matching

The Master searches the registration list based on the subscription information of the Listener. If
no matching Talker is found, it waits for the Talker to join; if it finds the matching Talker
information, it sends the Talker's RPC address information to the Listener via RPC.

af://n1156

4. Listener sends a connection request

The Listener receives the Talker address information sent back by the Master, and tries to send a
connection request to the Talker via RPC, and transmits the topic name, message type and
communication protocol (TCP/UDP) subscribed to.

5. Talker confirms the connection request

After the Talker receives the connection request sent by the Listener, it continues to confirm the
connection information to the Listener via RPC, which contains its own TCP address information.

6. Listener tries to establish a network connection with Talker

After the Listener receives the confirmation message, it uses TCP to try to establish a network
connection with the Talker.

7. Talker publishes data to Listener

After successfully establishing a connection, Talker starts to send topic message data to Listener.

From the above analysis, it can be found that the communication protocol used in the first five
steps is RPC, and TCP is used only in the process of publishing data.

ROS Master plays an important role in the process of establishing connections between nodes, but
does not participate in the final data transmission between nodes.

After the nodes have established a connection, you can turn off the ROS Master, and the data
transmission between the nodes will not be affected, but other nodes cannot join the network
between the two nodes.

3.5.2 Parameter management mechanism

The parameters are similar to global variables in ROS and are managed by ROS Master. Their
communication mechanism is relatively simple and does not involve TCP/UDP communication, as
shown in the figure below.

1.Talker sets variables

The Talker uses RPC to send parameter setting data to ROS Master, including parameter names
and parameter values; ROS Master saves the parameter names and parameter values in the
parameter list.

2. Listener searches parameter values

The Listener sends a parameter search request to the ROS Master via RPC, including the
parameter name to be searched.

3. ROS Master sends parameter values to Listener

The Master searches the parameter list according to the Listener's search request. After finding
the parameters, it uses RPC to send the parameter values to the Listener.

It should be noted here that if the Talker updates the parameter values to the Master, the Listener
cannot know that the parameter values have been updated without searching the parameter
values again. Therefore, in many application scenes, a dynamic parameter update mechanism is
required. Chapter 12 will specifically explain the implementation of the dynamic parameter
configuration function in ROS.

Appendix 4. ROS Basics

4.1 Workspace

The main method of using ROS to realize robot development is of course to write code, so these
code files need to be placed in a fixed space, that is, the workspace.

4.1.2 What is a workspace

Workspace is a folder for storing project development related files. ROS after the Fuerte version
uses the Catkin compilation system by default. The workspace structure under a typical Catkin
compilation system is as follows.

A typical workspace generally includes the following four directory spaces.

(1) src: code space, the most commonly used folder in the development process, used to store the
source code files of all ROS packages.

(2) build: compilation space, used to store the cache information and intermediate files generated
during the compilation of the workspace.

(3) devel: development space, used to place executable files generated by compilation.

(4) lib: installation library space. After the compilation is successful, you can use the make install
command to install the executable files into the space, and run the environment variable scripts in
the space to run these executable files in the terminal. The installation library space is not
necessary, and this folder may not be available in many workspaces.

4.2.2 Create a workspace

The command to create a workspace is relatively simple. First, use the system command to create
the workspace directory, and then run the ROS workspace initialization command to complete the
creation process:

Create a folder named catkin_ws and continue to create a folder named src under catkin_ws.

Switch to the src folder under the catkin_ws folder.

 mkdir -p ~/catkin_ws/src

 cd ~/catkin_ws/src

af://n1204
af://n1205

Initialize the folder.

After the creation is complete, the catkin_make command can be used to compile the entire
workspace in the root directory of the workspace:

Switch to the catkin_ws folder:

Run the compile command:

During the compilation process, two folders, build and devel, and their files will be automatically
generated in the root directory of the workspace. After the compilation is complete, several
environment variable setting scripts in the form of setup.*sh have been generated in the devel
folder. Use the source command to run these script files, then the environment variables in the
workspace can take effect.

In order to ensure that the environment variables have taken effect, use the following command
to check:

If the printed path already contains the path of the current workspace, it means that the
environment variable is set successfully (see the figure below).

The environment variables set by the source command in the terminal can only be effective in the
current terminal. If you want the environment variables to be effective in all terminals, you need to
add the environment variable settings in the terminal configuration file:

Please use the workspace path instead of WORKSPACE.

4.2.3 Create a package

The form of the package in ROS is as follows:

 catkin_init_workspace

cd ~/catkin_ws/

 catkin_make

 source devel/setup.bash

 echo $ROS_PACKAGE_PATH

echo"source/WORKSPACE/devel/setup.bash">>~/.bashrc

my_package/

 CMakeLists.txt

 package.xml

af://n1236

The package.xml file provides meta-information of the package, that is, information describing the
attributes of the package. The CMakeLists.txt file records the compilation rules of the package.

ROS does not allow other packages to be nested in a certain package, and multiple packages must
be placed in parallel in the code space.

ROS provides the command catkin_create_pkg to directly create a package. The usage of this
command is as follows:

When running the catkin_create_pkg command, the user needs to enter the package name and
the names of other packages that it depends on (depend1, depend2, depend3). For example, we
need to create a learning_limo package, which depends on std_msgs, roscpp, rospy and other
packages.

First enter the code space and use the catkin_create_pkg command to create a package:

Switch to the src folder under the catkin_ws folder

Run the command to create the package.

After the creation is complete, a learning_limo package will be generated in the code space src,
which already contains the package.xml and CMakeLists.txt files.

Then go back to the root directory of the workspace to compile and set the environment variables:

Switch to the catkin_ws folder:

Run the compile command:

Set environment variables

The above is the basic process of creating a package.

Note: In the same workspace, no package with the same name is allowed, otherwise an error will
be reported during compilation.

 catkin_create_pkg <package_name> [depend1] [depend2] [depend3]...

cd ~/catkin_ws/src

catkin_create_pkg learning_limo std_msgs rospy roscpp

cd ~/catkin_ws

 catkin_make

source ~/catkin_ws/devel/setup.bash

4.3 Write package to control limo

To use topic communication mechanism to control the movement of limo, It is necessary to write
two nodes, Publisher and Subscriber. Publisher is responsible for issuing speed control
instructions to limo, and Subscriber is responsible for monitoring the speed received by Limo.

4.3.1 How to create Publisher

The main role of Publisher is to publish messages of specific data types for specific topics. Try to
use code to implement a node. Create a Publisher in the node and control the movement of Limo.
The source code file’s location is

~/agilex_ws/src/limo_ros/learning_limo/src/talker.cpp, and its contents are as follows:

#include <sstream>

#include "ros/ros.h"

#include "std_msgs/String.h"

#include <geometry_msgs/Twist.h>

int main(int argc, char **argv)

{

 // The ROS node is initialized

 ros::init(argc, argv, "talker");

 // Create a node handle

 ros::NodeHandle n;

 // Create a Publisher and publish a topic called Chatter with a message type

geometry_MSgs ::Twist

 ros::Publisher chatter_pub = n.advertise<geometry_msgs::Twist>("cmd_vel",

1000);

 //Set the frequency of the loop

 ros::Rate loop_rate(10);

 for (int count = 0; count<10;count++)

 {

 //Set the speed at which you want to publish

 geometry_msgs::Twist twist;

 geometry_msgs::Vector3 linear;

 linear.x=0.1;

 linear.y=0;

 linear.z=0;

 geometry_msgs::Vector3 angular;

 angular.x=0;

 angular.y=0;

 angular.z=0;

 //Assign the set speed to Twist

 twist.linear=linear;

 twist.angular=angular;

 //Publish the set speed

 chatter_pub.publish(twist);

 // Loop waiting for the callback function

af://n1259

4.3.2 How to create a Subscriber

Next, try to create a Subscriber to subscribe to the control command published by the Publisher
node. The source code file’s location is

~/agilex_ws/src/limo_ros/learning_limo/src/listener.cpp，and its contents are as follows:

 ros::spinOnce();

 // According to the cycle frequency delay

 loop_rate.sleep();

 }

return 0;

}

#include "ros/ros.h"

#include "std_msgs/String.h"

#include <geometry_msgs/Twist.h>

// Upon receiving the subscribed message, the message callback function is

entered

void chatterCallback(const geometry_msgs::TwistConstPtr& msg)

{

 // Extract data from MSG and assign values

 double x = msg->linear.x;

 double y = msg->linear.y;

 double z = msg->angular.z;

 // Print the received message

 ROS_INFO("I get x: [%f]", x);

 ROS_INFO("I get y: [%f]", y);

 ROS_INFO("I get z: [%f]", z);

}

int main(int argc, char **argv)

{

 // Initialize the ROS node

 ros::init(argc, argv, "listener");

// Create a node handle

ros::NodeHandle n;

// Create a Subscriber, subscribe to a topic called Chatter, and register the

callback function chatterCallback

ros::Subscriber sub = n.subscribe("cmd_vel", 1000, chatterCallback);

// Loop waiting for the callback function

ros::spin();

return 0;

af://n1265

4.3.3 Compile package

The code of node has been completed using C++. As C++ is a compiled language, it needs to be
compiled into an executable file before running. However, if code is written using a scripting
language like Python, there is no need for compilation, and this step can be skipped.

To compile the code in ROS, CMake is used as a compiler. Compilation rules are specified in the
CMakeLists.txt file within the package. This file is generated automatically when creating a package
using the catkin command. Most compilation options have been configured with detailed
comments. External documentation may not be necessary since code can be compiled with minor
modifications.

The CMakeLists.txt file in the package can be opened to locate configuration items. Comments can
be removed, and adjustments can be made as required.

4.3.4 Run Publisher and Subscriber

After the compilation is complete, we can finally run the Publisher and Subscriber nodes. Before
running the nodes, you need to set the environment variables in the terminal, otherwise the
executable file generated by the final compilation of the package cannot be found:

Switch to the catkin_ws directory:

Set environment variables:

The configuration script of environment variables can also be added to the configuration file of the
terminal:

In limo, the environment variables have been set, and you can start the routine according to the
following steps:

1. Launch the chassis node

Note: Before running the command, please make sure that the programs in other terminals have
been terminated. The termination command is: Ctrl+c.

}

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(talker src/talker.cpp)

target_link_libraries(talker ${catkin_LIBRARIES})

add_dependencies(talker ${PROJECT_NAME}_generate_messages_cpp)

add_executable(listener src/listener.cpp)

target_link_libraries(listener ${catkin_LIBRARIES})

add_dependencies(talker ${PROJECT_NAME}_generate_messages_cpp)

 cd ~/catkin_ws

source ./devel/setup.bash

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

source ~/.bashrc

af://n1269
af://n1274

Tag attribute Attribute function

name="NODE_NAME"
Assign a name to the node, which will override the node_name
defined by ros::init()

Before running the node, you first need to ensure that the chassis node has been successfully
launched:

2.Launch Subscriber

First use the rosrun command to launch the Subscriber node and subscribe to the news about to
be published by Publisher:

If the message is successfully subscribed, the content of the received message will be displayed in
the terminal.

3. Launch Publisher

Next use the rosrun command to launch Publisher:

If the Publisher node is running normally, the vehicle will move and the Subscriber node will also
receive the message.

4.4 ROS common components

4.4.1Launch File

The Launch File is a way to launch multiple nodes at the same time in ROS. It can also
automatically start the ROS Master, and can realize various configurations of each node, which
provides great convenience for the operation of multiple nodes.

(1) Launch tag

The launch tag is like a generous bracket that defines an area. All launch files start with < launch>
and end with < /launch>. All description tags must be written between < launch> and < /launch>

（2）Node tag

The node tag can be said to be the most common tag in the launch file. Each node tag includes the
name attribute of the node in the ROS graph (name), the package name where the node is located
(pkg), and the type of the node (type). The common usage is as follows:

roslaunch limo_base limo_base.launch

rosrun learning_limo listener

rosrun learning_limo talker

<launch>

……

……

</launch>

<node pkg="package-name" type="executable-name" name="node-name" />

af://n1299

Tag attribute Attribute function

pkg="PACKAGE_NAME" The name of the package where the node is located

type="FILE_NAME" Define the executable file name of the node

output="screen"
Print the standard output of the node to the terminal screen, and
the default output is a log file.

respawn="true"
Reset the properties. When the node stops, it will automatically
restart. The default is false.

ns = "NAME_SPACE"
Namespace, which adds a namespace prefix to the relative name
in the node.

args="arguments" Input parameters required by the node.

Tag attribute Attribute function

file ="$(find pkg-name)/path/filename.xml" Specify the files you want to include

（3）Include tag

This tag can import another roslaunch XML file to the current file.

Use it like this：

（4）Remap tag

The remap tag is remapping. ROS supports topic remapping. The remap tag contains an original-
name and a new-name.

For example, now get a node that subscribes to the "/chatter" topic, but the node can only be
published to the "/demo/chatter" topic. Since the message types of these two topics are the same,
if users want these two nodes to communicate, then write this in the launch file:

In this way, you can directly remap /chattertopic to /demo/chatter, so that the two nodes can
communicate without modifying any code.

（5）Param tag

The role of the param tag is equivalent to the rosparam set in the command line.

For example, now add a parameter named demo_param with a value of 1.0 in the parameter
server.

（6）Rosparam tag

The rosparam tag allows a large number of parameters to be imported from the YAML file at once.

<include file="$(find demo)/launch/demo.launch" />

<remap from="chatter" to="demo/chatter"/>

<param name="demo_param" type="int" value="1.0"/>

（7）Arg tag

Argument is another concept, similar to the local variables in the launch file. It is limited to the
launch file and facilitates the reconstruction of the launch file. It has nothing to do with the
internal implementation of the ROS node.

Set argument to use the arg tag element, and the syntax is as follows:

4.4.2 Rviz

Rviz is a 3D visualization tool, which is well compatible with various robot platforms based on ROS
software framework. In rviz, you can use XML to describe the size, quality, position, material, joints
and other attributes of any physical objects such as robots and surrounding objects, and present
them in the interface. At the same time, rviz can also graphically display the information of the
robot's sensors, the robot's motion status, and the changes in the surrounding environment in
real time. All in all, rviz can help developers realize the graphical display of all monitorable
information. Developers can also control the behavior of the robot through buttons, sliders, and
values under the control interface of rviz. The following figure shows the raster map and laser
data graphically displayed by rviz during the map building.

4.4.3 Qt toolbox

Computation graph visualization tool (rqt_graph)

The rqt_graph tool can graphically display the computation graph in the current ROS system.
When running the mapping function, use the following command to launch the tool:

The computation graph after successful launch is shown in the figure below.

<rosparam command="load" file="$(find pkg-name)/path/name.yaml"/>

<arg name="arg-name" default= "arg-value"/>

rqt_graph

af://n1360
af://n1363

TF relationship visualization tool (rqt_tf_tree)

The rqt_tf_tree tool can graphically display the TF relationship between the currently running
nodes. When running the mapping function, use the following command to launch the tool:

The TF relationship diagram after successful launch is shown in the figure below:

rosrun rqt_tf_tree rqt_tf_tree

Appendix 5 System Burning

5.1 Download and install balenaetcher

Download and install balenaetcher on a PC; download link: https://www.balena.io/etcher/;
download different versions according to the operating system and architecture of the PC.

5.2 Download the image to be burned

Here is an example of the official image provided by our company. Use Baidu cloud disk to
download the image, and the download link is:https://drive.google.com/file/d/16uIAMiD4ziUZyTxlA
cFLeDGFdeaSvzlU/view?usp=sharing

5.3 Instructions on software usage

The instructions on software usage in the Linux system are taken as an example.

1. Open the software and select the image to be burned

af://n1376
af://n1377
https://www.balena.io/etcher/
af://n1379
https://drive.google.com/file/d/16uIAMiD4ziUZyTxlAcFLeDGFdeaSvzlU/view?usp=sharing
af://n1381

2. Select the SD card that needs to be burned

3. Click Flash to start burning

Appendix 6 Firmware Upgrade

The firmware upgrade software is in the main directory of limo, and the file name is
LimonTest_Nano. The firmware required for the upgrade is in our official GitHub, and the link is: ht
tps://github.com/agilexrobotics/limo-doc.

Note: If LimonTest_Nano in limo cannot be opened normally, please download the latest software
from our official GitHub, and the link is: https://github.com/agilexrobotics/limo-doc

After downloading the firmware that needs to be upgraded, then start the operation steps:

1. Enter the firmware upgrade mode

In the shutdown state, press the power button twice to enter the firmware upgrade mode. When
the power button flashes, it enters the firmware upgrade mode successfully. After a few seconds,
nano will start normally.

2. Grant LimonTest_Nano software running permissions

Open the terminal and enter the command in the terminal:

3. Launch the software and start to upgrade the firmware

Enter the command in the terminal:

After the software is successfully opened, click the upgrade button, and the displayed screen is as
shown in the figure below:

chmod +x LimoTestV1.1_Nano

./LimoTestV1.1_Nano

af://n1397
https://github.com/agilexrobotics/limo-doc
https://github.com/agilexrobotics/limo-doc
af://n1401
af://n1403
af://n1406

Select the corresponding serial port; under normal circumstances, select the serial port ttyTHS1;
click Open Serial to open the serial port, and then click Load Firmware File to select the firmware
to be upgraded.

Select the firmware information in the firmware list, and then click the Start Upgrade button to
start the firmware upgrade.

After the upgrade is successful, click the Close Serial button to close the serial port.

Appendix 7 Parameter Configuration of Navigation Package

If you need to try to debug the parameters in the package yourself, you can refer to the following
list.

af://n1417

Parameter Type Default Description

~throttle_scans int 1

The scan data threshold to be
processed; the default is to process 1
scan data at a time (it can be set
larger to skip some scan data)

~base_frame string base_link Robot base coordinate system

~map_frame string map Map coordinate system

~odom_frame string odom Odometer coordinate system

~map_update_interval float 5.0 Map update frequency

~maxUrange float 80
Detect the maximum available range,
that is, the range that the beam can
reach

~sigma float 0.05
Standard deviation of endpoint
matching

~kernelSize int 1
Used to find the corresponding kernel
size

~lstep float 0.05 Translation optimization step

~astep float 0.05 Rotation optimization step

~iterations int 5 Scan matching iterations

~lsigma float 0.075
Laser standard deviation for
likelihood calculation

~ogain float 3.0
Used for smooth resampling effect
during likelihood calculation

~lskip int 0
The number of beams skipped in each
scan.

~minimumScore float 0.0
The lowest value of the scan matching
result

~srr float 0.1
The mileage error during translation
as a translation function (rho/rho)

~srt float 0.2
The mileage error during translation
as a rotation function (rho/theta)

~str float 0.1
The mileage error during rotation as a
translation function(theta/rho)

7.1 Configurable parameters in the gmapping package

Note: The parameter configuration file of the gmapping package
is:~/agilex_ws/src/limo_ros/limo_bringup/launch/limo_gmapping.launch

af://n1419

Parameter Type Default Description

~stt float 0.2
The mileage error during rotation as a
rotation function (theta/theta)

~linearUpdate float 1.0
The robot translates a certain
distance and processes the laser data
once

~angularUpdate float 0.5
The robot rotates a certain distance
and processes the laser data once

~temporalUpdate float -1.0

If the latest scan processing is slower
than the update, one scan is
processed. Turn off time-based
updates when the value is negative.

~resampleThreshold float 0.5 Resampling threshold based on Neff

~particles int 30 Number of particles in the filter

~xmin float -100.0
The initial minimum size of the map in
the x direction

~ymin float -100.0
The initial minimum size of the map in
the y direction

~xmax float 100.0
The initial maximum size of the map
in the x direction

~ymax float 100.0
The initial maximum size of the map
in the y direction

~delta float 0.05 Map resolution

~llsamplerange float 0.01
The translation sampling distance of
likelihood calculation

~llsamplestep float 0.01
The translation sampling step of
likelihood calculation

~lasamplerange float 0.005
The angle sampling distance of
likelihood calculation

~lasamplestep float 0.005
The angle sampling step of likelihood
calculation

~transform_publish_period float 0.05 TF transform publishing period

~occ_thresh float 0.25
The threshold of raster map
occupancy rate

~maxRange float —— The maximum range of sensor

Parameter Default Analysis

map_frame map

The ID of the ROS coordinate system
used to publish submaps, the parent
coordinate system of the pose, usually
"map".

tracking_frame base_footprint

The ID of the ROS coordinate system

tracked by the SLAM algorithm. If IMU is
used, its coordinate system should be
used, usually "imu_link".

published_frame odom

The ID of the ROS coordinate system
used to publish the pose sub-
coordinate system, like the "odom"
coordinate system. If an "odom"
coordinate system is provided by
different parts of the system, in this

case, the "odom" pose in the
map_frame will be published.
Otherwise, it may be appropriate to set
it to "base_link".

odom_frame odom

It is enabled when provide_odom_frame
is true. The coordinate system is used to
publish local SLAM results between
published_frame and map_frame,
usually "odom".

provide_odom_frame true
If enabled, local, non-closed-loop, and
continuous poses will be published as
odom_frame in map_frame.

use_odometry false

If enabled, subscribe to
nav_msgs/Odometry messages on the
"odom" topic. The mileage information
will be provided, which is included in
SLAM.

num_laser_scans 1

The number of laser scanning topics
subscribed. Subscribe to
sensor_msgs/LaserScan on the "scan"
topic of one laser scanner or subscribe
to the topics "scan_1", "scan_2", etc. on
multiple laser scanners.

7.2 Configurable parameters in the cartographer package

Note: The parameter file of the cartographer package is:

~/agilex_ws/src/limo_ros/limo_bringup/param/build_map_2d.lua

af://n1607

Parameter Default Analysis

num_multi_echo_laser_scans 0

The number of subscribed multi-echo
laser scanning topics. Subscribe to
sensor_msgs/MultiEchoLaserScan on

the "echoes" topic of a laser scanner or
subscribe to the topics "echoes_1",
"echoes_2", etc. for multiple laser
scanners.

num_subdivisions_per_laser_scan 1

The number of point clouds that divide
each received (multi-echo) laser scan.
The subdivision scan can cancel the
scan acquired by the scan when the
scanner is moving. There is a

corresponding trajectory builder option
to accumulate subdivision scans into
the point cloud that will be used for
scan matching.

num_point_clouds 0

The number of point cloud topics to be
subscribed to. Subscribe to
sensor_msgs/PointCloud2 on the
"points2" topic of a range finder or
subscribe topics "points2_1",

"points2_2", etc. for multiple range
finders.

lookup_transform_timeout_sec 0.2
The timeout seconds of looking up and
transforming with tf2.

submap_publish_period_sec 0.3
The period (in seconds) for publishing
submaps, eg.0.3 seconds.

pose_publish_period_sec 5e-3

The period (in seconds) for publishing

poses, eg. 5e-3, with a frequency of 200
Hz.

trajectory_publish_period_sec 30e-3
The period for publishing trajectory tag
in seconds, eg. 30e-3, lasting 30
milliseconds.

Parameter Type Default Description

min_particles int 100 The minimum number of particles allowed.

max_particles int 5000 The maximum number of particles allowed.

7.3 Configurable parameters in the amcl package

Note: The parameter configuration files of the amcl package are: amcl_param_diff.yaml (the file is
the amcl parameter file used in the four-wheel differential, omnidirectional wheel, and track
motion modes), and amcl_param.yaml (the file is the amcl parameter file used in the Ackermann
motion mode) .

af://n1671

Parameter Type Default Description

kld_err double 0.01
The maximum error between the true
distribution and the estimated distribution.

kld_z double 0.99
The upper normal quantile of (1-p), where p
is the probability that the error on the
estimated detuning will be less than kld_err.

update_min_d double 0.2m
A translation movement needs to be
performed before performing the filter
update.

update_min_a double
π/ 6.0
radians

A rotation movement needs to be
performed before performing the filter
update.

resample_interval int 2
The number of filter updates required
before resampling.

transform_tolerance double 0

The time at which the published
transformation will be post-processed to
indicate that the transformation will be
effective in the future.

recovery_alpha_slow double 0

The exponential decay rate of the slow
average weight filter is used to decide when
to recover by adding random poses. A good
value may be 0.001.

recovery_alpha_fast double 0.0m

The exponential decay rate of the fast
average weight filter is used to decide when
to recover by adding random poses. A good
value may be 0.1.

initial_pose_x double 0.0m
The initial pose average (x), used to initialize
the filter with Gaussian distribution.

initial_pose_y double 0.0rad
The initial pose average (y), used to initialize
the filter with Gaussian distribution.

initial_pose_a double
0.5 *
0.5m

The initial pose average (yaw), used to
initialize the filter with Gaussian
distribution.

initial_cov_xx double
0.5 *
0.5m

The initial pose covariance (x * x), used to
initialize the filter with Gaussian
distribution.

initial_cov_yy double -1.0 Hz
The initial pose covariance (y * y), used to
initialize the filter with Gaussian
distribution.

Parameter Type Default Description

initial_cov_aa double 0.5 Hz
The initial pose covariance (yaw * yaw),
used to initialize the filter with Gaussian
distribution.

gui_publish_rate double FALSE
The maximum rate (Hz) of publishing visual
scans and paths. -1.0 is disabled.

save_pose_rate double FALSE

Store the maximum rate (Hz) of the last
estimated pose and covariance of the
parameter server in the variables
~initial_pose_ and ~initial_cov_. This saved
pose will be used in subsequent runs to
initialize the filter. -1.0 is disabled.

use_map_topic bool -1
When set to be true, AMCL will subscribe to
the map topic instead of making a service
call to receive its map.

first_map_only bool -1

When set to be true, AMCL will only use the
first mapping it subscribes to instead of
updating each time a new mapping is
received.

Parameter Type Default Description

acc_lim_x double 2.5 Robot’s x acceleration limit (m/s2)

acc_lim_y double 2.5 Robot’s y acceleration limit (m/s2)

acc_lim_th double 3.2
Robot’s rotational acceleration limit
(m/s2)

max_vel_trans double 0.55
The absolute value of the maximum
translational velocity of the robot (m/s).

min_vel_trans double 0.1
The absolute value of the minimum
translational velocity of the robot (m/s).

max_vel_x double 0.55 Robot’s maximum x velocity (m/s)

min_vel_x double 0.0
Robot’s minimum x velocity (m/s),
negative when moving in reverse

max_vel_y double 0.1 Robot’s maximum y velocity (m/s)

min_vel_y double -0.1 Robot’s minimum y velocity (m/s)

7.4 Configurable parameters in DWA

Note: The configuration parameter file of DWA is
~/agilex_ws/src/limo_ros/limo_bringup/param/diff/planner.yaml

af://n1779

Parameter Type Default Description

max_rot_vel double 1.0
The absolute value of the maximum
rotation velocity of the robot (rad/s)

min_rot_vel double 0.4
The absolute value of the minimum
rotation velocity of the robot (rad/s)

yaw_goal_tolerance double 0.05
The radian tolerance of the yaw/rotation
when the controller achieves its goal

xy_goal_tolerance double 0.10
The tolerance of the controller in the
distance between x and y when achieving
the goal (m/s)

latch_xy_goal_tolerance bool false

If the goal tolerance is locked, when the
robot reaches the goal xy position, it will
simply rotate into position, even if it
eventually exceeds the goal tolerance
while doing so.

sim_time double 1.7
Time to simulate the trajectory forward in
seconds

sim_granularity double 0.025
Step taken between points on a given
trajectory (m/s)

vx_samples int 3
The number of samples used when
exploring the x velocity space

vy_samples int 10
The number of samples used when
exploring the y velocity space

vth_samples int 20
The number of samples used when
exploring the theta velocity space

controller_frequency double 20.0

Call the controller’s frequency. If it is not
set in the controller's namespace, use
searchParam to read the parameters
from the parent namespace. Use
together with move_base, which means
you only need to set its
"controller_frequency" parameter and
you can safely not set this parameter.

path_distance_bias double 32.0
The weight that how close the controller
should be to the given path

goal_distance_bias double 24.0
The weight that the controller should try
to reach its local goal and it should also
control the velocity

occdist_scale double 0.01
The weight that the controller should try
to avoid obstacles

Parameter Type Default Description

forward_point_distance double 0.325
The distance from the center of the robot
to the additional scoring point, in meters

stop_time_buffer double 0.2
The amount of time the robot must stop
before colliding for the trajectory to be
valid, in seconds

scaling_speed double 0.25
The absolute value of the speed at which
the robot's footprint is scaled (m/s)

max_scaling_factor double 0.2
The biggest factor in scaling a robot's
footprint

publish_cost_grid bool false

Whether the cost grid that the planner
will use when planning will be published?
When it’s true, sensor_msgs/PointCloud2
will be available on the ~/cost_cloud
topic. Each point cloud represents a cost
grid and has a field for each individual
scoring function component and the total
cost of each cell, taking the scoring
parameters into account.

oscillation_reset_dist double 0.05
How far the robot must move in meters
before resetting the oscillation tag

prune_plan bool true

Define whether the robot will eat the plan
when moving along the path. If it’s set to
be true, the points will fall from the end
of the plan as soon as the robots move
more than 1 meter.

Parameter Type Default Description

acc_lim_x double 0.5
Robot’s maximum translational acceleration (m/s
^2)

acc_lim_theta double 0.5
Robot’s maximum angular acceleration (radian/s
^2)

max_vel_x double 0.4 Robot’s maximum translational velocity (m/s)

max_vel_x_backwards double 0.2
The maximum absolute translational velocity (in
m/s) when the robot is traveling backwards.

max_vel_theta double 0.3 Robot’s maximum angular velocity (radian/s)

min_turning_radius double 0.0
Automotive robot’s minimum turning radius (set to
be zero for differential drive robots).

7.5 Configurable parameters in TEB

Note: The parameter configuration file of TEB is:

~/agilex_ws/src/limo_ros/limo_bringup/param/carlike2/teb_local_planner_params.yaml

af://n1937

Parameter Type Default Description

wheelbase double 1.0

The distance between the rear axle and the front
axle. For rear-wheel robots, this value may be
negative (only required when
cmd_angle_instead_rotvel is set to be true).

cmd_angle_instead_rotvel bool false

Replace the rotation velocity in the command
velocity message with the corresponding steering
angle [-pi/2, pi/2]. Note that it is not advisable to
change the semantics of the yaw rate according to
the application. Here, it is only the input required
by the stage simulator.The data type in
ackermann_msgs is more appropriate, but
move_base does not support it. The local planner
itself does not intend to send commands.

max_vel_y double 0.0
Robot’s maximum sweep velocity (it should be zero
for incomplete robots!)

acc_lim_y double 0.5 Robot’s maximum sweep acceleration

footprint_model/type double point

Specify the type of robot footprint model used for
optimization. The different types are "point",
"circle", "line", "two_circles" and "polygon". The type
of model can significantly affect the required
calculation time.

footprint_model/radius double 0.2
This parameter is only related to the "circle" type. It
contains the radius of the circle. The center of the
circle is on the rotation axis of the robot.

footprint_model/line_start double [-0.3, 0.0]
This parameter is only related to the "line" type. It
contains the starting coordinates of the line
segment.

footprint_model/line_end double [0.3, 0.0]
This parameter is only related to the "line" type. It
contains the ending coordinates of the line
segment.

footprint_model/front_offset double 0.2

This parameter is only related to the "two_circles"
type. It describes how much the center of the front
circle has moved along the x-axis of the robot.
Assume that the rotation axis of the robot is
located at [0,0].

footprint_model/front_radius double 0.2
This parameter is only related to the "two_circles"
type. It contains the radius of the front circle.

footprint_model/rear_offset double 0.2

This parameter is only related to the "two_circles"
type. It describes how much the center of the back
circle has moved along the negative x-axis of the
robot. Assume that the rotation axis of the robot is
located at [0,0].

footprint_model/rear_radius double 0.2
This parameter is only related to the "two_circles"
type. It contains the radius of the back circle.

footprint_model/vertices double [0.25,-0.05]

This parameter is only related to the "polygon"
type. It contains a list of polygon vertices (each is a
two-dimensional coordinate). Polygons are always
closed: do not repeat the first vertex at the end.

is_footprint_dynamic bool false
If it’s true, the footprint is updated before checking
the trajectory's feasibility.

xy_goal_tolerance double 0.2
Allowable final Euclidean distance to the goal
position (in meters).

yaw_goal_tolerance double 0.2 Allowable final direction error (in radians).

Parameter Type Default Description

free_goal_vel bool false
Remove the goal velocity constraint, so that the
robot can reach the goal at the maximum velocity.

dt_ref double 0.3

The required time resolution of the trajectory (the
trajectory is not fixed to dt_ref, because the time
resolution is part of the optimization, but if dt_ref
+-dt_hysteresis is violated, the trajectory size will be
adjusted between iterations.

dt_hysteresis double 0.1
The lag that is automatically resized according to
the current time resolution, usually about 10% of
the recommended dt_ref.

min_samples int 3
Minimum number of samples (should always be
greater than 2).

global_plan_overwrite_orientation bool true
Override the direction of the local sub-goals
provided by the global planner (because they
usually only provide a two-dimensional path).

global_plan_viapoint_sep double
-0.1
(disabled))

If it is positive, the via points are extracted from the
global plan (path following mode). This value
determines the resolution of the reference path
(the minimum period between every two
consecutive via points along the global plane, if it is
negative.

max_global_plan_lookahead_dist double 3.0

Specify the maximum length (cumulative Euclidean
distance) of the subset of the global plan
considered for optimization. The actual length is
determined by the logical combination of the size
of the local cost map and this maximum limit. Set
to be zero or a negative number to deactivate this
limit.

force_reinit_new_goal_dist double 1.0
If the previous goal update period is greater than
the specified value (in meters), re-initialize the
trajectory (skip hot start).

feasibility_check_no_poses bool 4
Specify that the feasibility of the pose on the
prediction plan should be checked during each
sampling period.

publish_feedback bool false

Publish planner feedback with complete trajectory
and active obstacle list (it should only be enabled
for evaluation or debugging). See the publisher list
above.

shrink_horizon_backup bool true

Allow the planner to temporarily shrink the scope
(50%) in the event that a problem (such as
infeasibility) is automatically detected. See also
parameter shrink_horizon_min_duration.

allow_init_with_backwards_motion bool false

If it’s true, the base trajectory may be initialized
with backward motion in case the goal is behind
the starting point in the local cost map (this is only
recommended if the robot is equipped with a rear
sensor).

exact_arc_length double false

If it’s true, the planner uses the precise arc length (-
> increased CPU time) in the calculation of velocity,
acceleration and turn rate, otherwise it uses the
Euclidean approximation.

shrink_horizon_min_duration double 10.0

If an infeasible trajectory is detected, please specify
the shortest duration for shrinking the horizon (see
the parameter shrink_horizon_backup to activate
the shrink horizon mode).

Parameter Type Default Description

min_obstacle_dist double 0.5
The minimum expected distance to the obstacle (in
meters).

include_costmap_obstacles double true

Specify whether or not the obstacles of the local
cost map should be considered. Each cell marked
as an obstacle is treated as a point obstacle.
Therefore, do not choose a very small cost map
resolution, because it will increase the calculation
time. In future versions, this situation will be
resolved and additional api will be provided for
dynamic obstacles.

costmap_obstacles_behind_robot_dist bool 1.0
Limit the occupied local cost map obstacles that
are taken into account when planning behind the
robot (specify the distance in meters) .

obstacle_poses_affected double 30

Each obstacle position is attached to the nearest
pose on the trajectory to maintain the distance.
You can also consider additional neighbors. Please
note that this parameter may be removed in a
future version because the obstacle association
strategy has been modified in kinetic+. Refer to the
parameter description of
legacy_obstacle_association.

inflation_dist double pre kinetic
Buffer around obstacles with non-zero penalty cost
(should be greater than min_obstacle_dist to take
effect). Refer weight_inflation.

include_dynamic_obstacles string false

If this parameter is set to be true, the motion of
obstacles with non-zero velocity will be predicted
and considered through the constant velocity
model during the optimization process (provided
through user-provided obstacles or obtained from
the costmap_converter). New

legacy_obstacle_association bool false

The strategy for connecting trajectory poses and
optimizing obstacles has been revised (see change
log). You can switch to the old/previous strategy by
setting this parameter to be true. Old strategy.

obstacle_association_force_inclusion_factor double 1.5

The non-legacy obstacle association strategy tries
to connect only the relevant obstacles with the
discretized trajectory in the optimization process.
But all obstacles within the specified distance are
forcibly included (as a multiple of
min_obstacle_dist). For example, choose 2.0 to
force the consideration of obstacles within a radius
of 2.0*min_obstacle_dist. [This parameter is used
only when the parameter
legacy_obstacle_association is false]

obstacle_association_cutoff_factor int 5

See obstacle_association_force_inclusion_factor,
but all obstacles that exceed the multiple of [value]
* min_obstacle_dist are ignored in the optimization
process. The parameter obstacle
_association_force_inclusion_factor is processed
first. [This parameter is used only when the
parameter legacy_obstacle_association is false]

costmap_converter_plugin int ""

Define the plug-in name to convert cost map cells
to points/lines/polygons. Set an empty string to
disable conversion so that all cells are treated as
point obstacles.

costmap_converter_spin_thread double true
If set to be true, the cost map converter calls its
callback queue in a different thread.

Parameter Type Default Description

costmap_converter_rate double 5.0

Rate defines the frequency that the
costmap_converter plugin processes the current
cost map(This value should not be higher than the
cost map update rate) [in Hertz].

no_inner_iterations double 5
The actual number of solver iterations called in
each outer loop iteration. See parameter
no_outer_iterations.

no_outer_iterations double 4

Each outer loop iteration will automatically adjust
the trajectory size and call the internal optimizer
(execute no_inner_iterations) according to the
required time resolution dt_ref. Therefore, the total
number of solver iterations in each planning cycle
is the product of the two values.

penalty_epsilon double 0.1
Add a small safety margin to the penalty function
of the hard constraint approximation.

weight_max_vel_x double 2.0
Optimized weight to meet the maximum allowable
translational velocity.

weight_max_vel_theta double 1.0
Optimized weight to meet the maximum allowable
angular velocity.

weight_acc_lim_x double 1.0
Optimized weight to meet the maximum allowable
translational acceleration.

weight_acc_lim_theta double 1.0
Optimized weight to meet the maximum allowable
angular acceleration.

weight_kinematics_nh double 1000.0

The optimized weight used to meet non-holonomic
kinematics (this parameter must be very high,
because the kinematics equation constitutes an
equality constraint, and the "original" cost value is
small compared with other costs, so even a value
of 1000 does not mean the matrix condition is not
good).

weight_kinematics_forward_drive double 1.0

The optimized weight to force the robot to select
only the forward direction (positive translational
velocity). The small weight (eg. 1.0) still allows
driving backwards. A value around 1000 can almost
prevent backward driving (but it cannot be
guaranteed).

weight_kinematics_turning_radius double 1.0
The optimized weight to force the minimum
turning radius (only for automobile robots).

weight_optimaltime double 1.0
Optimized weight to shorten trajectory wrt
conversion/execution time.

weight_obstacle bool 50.0
Optimized weight to keep the minimum distance
from the obstacle.

weight_viapoint bool 1.0
The optimized weight (corresponding reference
path) used to minimize the distance to the passing
point. 0.4 new version.

weight_inflation int 0.1
The optimized weight of the inflation penalty
(should be small).

weight_adapt_factor double 2.0

In each outer TEB iteration (weight_new =
weight_old*factor), some special weights (currently
weight_obstacle) are repeatedly scaled by this
factor. Iteratively increasing the weights instead of
setting a huge prior value will lead to better
numerical conditions for the basic optimization
problem.

Parameter Type Default Description

enable_homotopy_class_planning double true
Activate parallel planning in different topologies
(requires more CPU resources because multiple
trajectories are optimized at once).

enable_multithreading double true
Activate multiple threads to plan each trajectory in
different threads.

max_number_classes bool 4
Specify the maximum number of different
trajectories to be considered (limits the
computational effort).

selection_cost_hysteresis int 1.0

Specify how much trajectory cost the new
candidate must have compared to the previously
selected trajectory to be selected (select if
new_cost <old_cost*factor).

selection_obst_cost_scale double 100.0
Additional scaling of the obstacle cost term used
only to select the "best" candidate.

selection_viapoint_cost_scale double 1.0
The additional scaling used only to select the "best"
candidate through the point cost clause. 0.4 new
version.

selection_alternative_time_cost double false
If it's true, the time cost (sum of squares of the
time difference) will be replaced with the total
conversion time (sum of the time difference).

roadmap_graph_no_samples double 15
Specify the number of samples generated to create
the roadmap.

roadmap_graph_area_width bool 6
Sample the random keypoints/waypoints in the
rectangular area between the starting point and
the goal. Specify the width of the area in meters.

h_signature_prescaler bool 1.0
The internal parameter (H-signature) of the ratio
used to distinguish homotopy classes. Warn

h_signature_threshold double 0.1

If the differences between the real part and the
complex part are lower than the specified
threshold, it is assumed that the two H signatures
are equal.

obstacle_heading_threshold string 1.0
Specify the value of the scalar product between the
obstacle course and the goal course so that they
(obstacles) are taken into account when exploring.

visualize_hc_graph string false
Visualize the graph created to explore the unique
trajectory (check the tag message in rviz).

viapoints_all_candidates bool true

If it’s true, all trajectories of different topologies are
attached to a set of via points, otherwise only
trajectories that share the same topology with the
initial/global plan are connected to them (no effect
on test_optim_node). 0.4 new version

switching_blocking_period double 0.0
Specify the duration (in seconds) that needs to
expire before being allowed to switch to the new
equivalence class.

odom_topic double odom
The subject name of the odometer message,
provided by the robot driver or simulator.

map_frame bool odom
Global planning framework (if it is a static map, this
parameter usually must be changed to "/map".

Appendix 8 Supporting Courses

8.1 Free course video

Baidu cloud disk download link: https://pan.baidu.com/s/1z1H38D2uHPLuOQ4_xnkHrw .
Extraction code：1234

8.2 Free courseware

Baidu cloud disk download link: https://pan.baidu.com/s/1wpvWjYo3ME9ljzj9Eb2wJg . Extraction
code：1234

af://n2346
af://n2347
https://pan.baidu.com/s/1z1H38D2uHPLuOQ4_xnkHrw
af://n2349
https://pan.baidu.com/s/1wpvWjYo3ME9ljzj9Eb2wJg

Brand of the group

Official Distributor

gr@generationrobots.com

+33 5 56 39 37 05
www.generationrobots.com

https://www.linkedin.com/company/generation-robots/
https://twitter.com/GenerationRobot
https://www.youtube.com/@Generationrobots
mailto:gr@generationrobots.com
mailto:david.denis@generationrobots.com
http://www.generationrobots.com/en/

	LIMO Usage and Development Manual
	1 LIMO Introduction
	1.1 Preface
	1.2 Component list
	1.3 Tech specifications
	1.4 Nvidia Jetson Nano introduction
	1.5 Component name
	1.6 Function highlights
	1.7 Mode switching method
	1.8 Operation instructions
	1.9 Remote desktop connection
	1.9.1 Download and install NoMachine
	1.9.2 Connect to wifi
	1.9.2 Connect to Limo remotely

	2 Instructions on Chassis Electrical Information
	2.1 Battery and charging
	2.1.1 Basic battery information
	Battery precautions

	2.1.2 Charging
	Charging precautions:

	2.2 Operational environment and safety precautions
	2.3 Power supply topology
	2.4 Communication topology

	3 Chassis Driver Drive
	3.1 C++ chassis driver
	3.2 Python chassis driver

	4 Chassis Kinematics Analysis
	4.1 Four-wheel differential motion mode
	4.2 Track motion mode
	4.3 Ackermann motion mode
	4.4 Mecanum motion mode

	5 LiDAR Mapping
	5.1 Introduction and use of LiDAR
	5.2 GMAPPING mapping
	5.2.1 Introduction of gmapping algorithm
	5.2.2 Operation of gmapping mapping

	5.3 Cartographer mapping
	5.3.1 Introduction of cartographer algorithm
	5.3.2 Operation of cartographer mapping

	6 LiDAR Navigation
	6.1 Navigation framework
	6.1.1 Move_base package
	6.1.2 Amcl package
	6.1.3 Introduction of DWA_planner and TEB_planner

	6.2 Limo navigation
	6.3 Limo path inspection

	7 Depth Camera + LiDAR Mapping
	7.1 Introduction and use of ORBBEC®Dabai
	7.2 Introduction and use of realsense
	7.3 View information of depth camera
	7.2 Introduction of rtabmap algorithm
	7.3 Rtabmap algorithm mapping
	7.4 Rtabmap algorithm navigation

	8 Vision Module
	8.1 Recognize text
	8.1.1 Function Introduction
	8.1.2 Running function

	8.2 Identifying traffic lights
	8.2.1 Function introduction
	8.1.2 Running function

	8.3 Lifting barrier control
	8.3.1 Function introduction
	8.1.2 Run function

	9 Voice module
	9.1 Speech converted to text
	9.1.1 Function introduction
	9.1.2 Running function

	9.2 Voice control
	9.2.1 Function Introduction
	9.2.2 Running function

	Appendix
	Appendix 1. Three Views
	Appendix 2. Basic Operating Commands
	2.1 Directory operating commands
	(1) Directory switch: cd
	(2) Directory view: ls
	(3) Create directory: mkdir
	(4) Show hidden directory: Ctrl+h
	(5)Terminate program: Ctrl+c

	2.2 ROS commonly used commands
	（4）Node running command

	Appendix 3. ROS Framework
	3.1 ROS architecture design
	3.2 Computation graph
	3.2.1 Nodes
	3.2.2 Message
	3.2.3 Topic
	3.2.4 Service

	3.3 File system
	3.4 Open source community
	3.5 Communication mechanism

	Appendix 4. ROS Basics
	4.1 Workspace
	4.2.3 Create a package

	4.3 Write package to control limo
	4.3.2 How to create a Subscriber
	4.3.3 Compile package
	4.3.4 Run Publisher and Subscriber
	4.4 ROS common components
	4.4.2 Rviz
	4.4.3 Qt toolbox

	Appendix 5 System Burning
	5.1 Download and install balenaetcher
	5.2 Download the image to be burned
	5.3 Instructions on software usage

	Appendix 6 Firmware Upgrade
	1. Enter the firmware upgrade mode
	2. Grant LimonTest_Nano software running permissions
	3. Launch the software and start to upgrade the firmware

	Appendix 7 Parameter Configuration of Navigation Package
	7.1 Configurable parameters in the gmapping package
	7.2 Configurable parameters in the cartographer package
	7.3 Configurable parameters in the amcl package
	7.4 Configurable parameters in DWA
	7.5 Configurable parameters in TEB

	Appendix 8 Supporting Courses
	8.1 Free course video
	8.2 Free courseware

