
SCOUT MINI Research & Development Kit Pro

0 Product Overview

The SCOUT MINI Research & Development Kit Pro is a ROS development kit designed and
developed by Agliex Robotics for entry-level and advanced ROS developers in the field of
scientific research and education. It comes equipped with high-performance industrial
control, high-precision LiDAR, and multiple sensors based on the Agliex Robot ROS
ecosystem. These features enable it to perform various functions such as mobile robot
motion control, communication, navigation, and map building, among others.

In addition to its technical capabilities, this kit is also lightweight, portable, and boasts a
highly technological industrial design. It even includes an exclusive sensor customized holder.
With complete developer documentation and DEMO resources, it serves as the ideal
experimental platform for rapid secondary development of ROS for multi-directional
applications like education and scientific research, product pre-research, subjects, and
product demonstration.

1 Configuration List and Parameters

1.1 Shipping List

1.1.1 SCOUT MINI Pro

Name Quantity Model

IPC 1 Nvidia AGX Xavier

Laser Sensor 1 RS-Helios-16P

Vision Sensor 1 Intel RealSense D435

Router 1 GL.iNet GL-A1300

Chassis 1 SCOUT MINI(off-road)

Remote Controller 1 FS-I6S

Charger 1 Agilex UY360

Voltage Stabilizer 1 24V To 12V

Voltage Stabilizer 1 12V To 5V

HD Display 1

USB To CAN 1

USB HUB 1

SCOUT MINI Pro Main configuration

1.2 SCOUT MINI Introduction

1.2.1 SCOUT MINI

The SCOUT MINI mobile chassis uses 4WD design with powerful off-road performance,
compact design and truly 'smart like a swallow, galloping like a heart'. This innovative design
inherits the advantages of the 4WD differential chassis series from SCOUT, which features
independent suspension and zero turning radius. The hub motor has also been improved
upon in this model.

With a minimum turning radius of 0m and a climbing angle almost reaching 30 degrees,
SCOUT MINI performs exceptionally well off-road despite being 50% smaller than the
original SCOUT. Its power control system offers precise, stable, and controllable power,
allowing it to achieve high speeds of up to 10.8km/h.

The SCOUT MINI development platform comes equipped with its own control system that
supports standard CAN protocol and can connect to various external devices. It also
supports ROS/Autoware secondary development and advanced robotics development.
Standard accessories include an activation plug, 24V@15Ah lithium battery, and an
endurance mileage of up to 10KM.

1.2.2 Get started quickly with Scout Mini

1.2.2.1 SCOUT MINI Checking

 Press power button and wait for a few seconds
 Check the display to see if the power is lower than 30%. If it is lower than 30%,

please charge it.
 If the battery level is less than 30%, please use the standard charger to charge

the vehicle. Turn off the power of the vehicle during charging.
 It takes about 1 and a half hours to charge from low battery to full power.

1.2.2.2 Remote Control

 Check whether the battery of remote controller has been installed.
 Move the joysticks SWA, SWB, SWC, and SWD to the top.
 Press and hold the power switch buttons 1 and 2 at the same time until the

power is turned on.

1.2.2.3 Remote Control Operation

The remote control has preset switches default setting. Please do not change the
switches setting. Any changing may cause control failure. SWB switch the control mode,
the SWC is controlling the light on and off while SWD controls the speed mode. The left
joystick controls the Scout mini move forward and backward while the right joystick
controls the rotation. Please note that the internal mapping motion of the chassis is
mapped based on percentage, so when the joysticks are at the same position, the speed
is constant.

 SWB is the control mode switching button. The remote controller joystick is at the
top for command mode, at the middle for remote control mode, and at the bottom
for constant speed mode.

 SWC is the light controlling button. When it is at the bottom position, it is closed,
when it is in the middle, the light is open, and the top position is the breathing light

mode. Please note that the lighting control option setting is only valid under the
remote controller mode.

 SWD is the speed gear selection mode, the up position is the low gear mode (the
fastest speed is about 10km/h), and bottom position is the high gear (the fastest
speed is about 20km/h). Please note that the gear setting button is only valid under
the remote control mode.

1.2.2.4 SCOUT MINI Preparation

 Please use SCOUT MINI in a relatively open area for the first time to avoid any
inappropriate operation and damage.

 Press the SCOUT MINI power button and wait a few seconds.
 Set SWB to the middle position.
 Try to switch the light mode manually to make sure that the mode is selected

correctly.
 Try to gently push the left joystick forward, you can see that the car is moving

forward slowly.
 Try to gently push the left joystick back, you can see that the car is moving

backwards slowly.
 Release the left joystick and the vehicle will stop.
 Try to gently push the right joystick to the left, you can see that the car slowly

rotates to the left.
 Try to gently push the right joystick to the right, you can see that the car slowly

rotates to the right.
 Release the right joystick and the vehicle will stop；
 Then try to control the vehicle in the relatively open area and be familiar with the

speed control of the vehicle.

1.2.2.5 Turn off SCOUT MINI

 Press SCOUT MINI power button and then release.

1.2.2.6 Turn off Remote Controller

 Hold the power button 1 and 2 at the same time for few seconds until turned off.

1.2.3 SCOUT MINI Parameters

SCOUT MINI Parameters Description

Size 627mm × 550mm × 252mm

Wheelbase 452mm

Track width 450mm

Weight 20kg

Minimum
Ground
Clearance

107mm

Standard Load 10kg(Tested on the ground, the friction coefficient is
0.5)

Maximum
Speed

20km/h

Minimum
Turning Radius

0(Can rotate in place)

Maximum
climbing angle

30°(With load)

Obstacle
avoiding

70mm

Maximum
mileage

10km(Without load)

Driver mode 4WD

Temperature -20℃~60℃

Charger AC 220

Charging time 1.5H

Voltage Output 24V

Battery 24V/15Ah

Code Wheel 1024 Photoelectric Incremental

Communication
interface

Standard CAN

IP protection IP22(IP64 for customization)

Suspension Independent swing arm suspension

1.3 Nvidia Xavier Introduction

NVIDIA® Jetson AGX Xavier™ sets a new standard for compute density, energy efficiency,
and AI inference capabilities in edge devices. This cutting-edge technology represents the
next evolution of intelligent machines with end-to-end autonomous capabilities. Despite
being only 100 x 87 mm, the Jetson AGX Xavier delivers the same performance as a larger
workstation while being one-tenth the size. This makes it the perfect solution for

autonomous machines such as delivery and logistics robots, factory systems, and large
industrial UAVs.

As the first computer designed specifically for autonomous machines, Jetson AGX Xavier is
powerful enough to perform complex tasks such as visual odometry, sensor fusion,
localization and mapping, obstacle detection, and route planning algorithms that are crucial
for next-generation robots. It offers GPU workstation-class performance in a compact form
factor, featuring 32 teraflops of peak computing power and 750 Gbps of high-speed I/O
performance.

Jetson AGX Xavier offers new levels of compute density, energy efficiency, and AI inference
capabilities at the edge. Users can configure their applications for 10-watt, 15-watt, or
30-watt operating modes using the Jetson AGX Xavier module.

Developer Kit Technical Specifications

GPU Tensor Core 512 -Volta GPU

CPU 8-core ARM v8.2 64-bit CPU, 8 MB L2 + 4 MB L3

Memory 32 GB 256-bit LPDDR4x | 137 GB/sec

Storage 32 GB eMMC 5.1

PCIe X16 X8 PCIe Gen4/x8 SLVS-EC

RJ45 Gigabit Ethernet

USB-C
2 USB 3.1 interfaces, DP interface (optional), PD interface (optional).
Supports closed system debugging and programming through the
same port.

Camera Interface （16 *）CSI-2 channels

M.2 Key M NVMe

M.2 Key E PCIe x1 + USB 2.0 + UART (for Wi-Fi/LTE) / I2S + DMIC + GPIOs

40 Pin Header UART + SPI + CAN + I2 C + I2 S + DMIC + GPIOs

HD Audio
connector

HD Audio

eSTATp + USB 3.0
Type A

SATA interface with PCIe x1 bridge + USB 3.0（Data for 2.5-inch
SATA interface）

HDMI Type A HDMI 2.0

µSD/UFS SD/UFS

1.4 Intel RealSense D435

Binocular vision sensors play a critical role in various applications within the field of robot
visual measurement, visual navigation, and other areas of the robotics industry. At present,
we have carefully chosen visual sensors that are widely used in scientific research and
education. Among them, the Intel RealSense Depth Camera D435 stands out with its global
image shutter and expansive field of view, enabling efficient capture and streaming of depth
data for moving objects. This camera delivers exceptionally precise depth perception,
making it an excellent choice for mobile prototypes.

Item Intel Realsense D435

Features

Scenes Indoor/Outdoor

Measure Distance About 10 m

Type of Depth Shutter
Global Shutter, 3um X 3um pixel

size

IMU Support No

Depth Camera

Depth Camera Active Infrared

FOV 86° x 57°（±3°）

Depth Frame Rate 0.105m

Depth Resolution 1280 x 720

Maximum Measurement Distance About 10 m

Depth Frame Rate 90 fps

RGB

Resolution 1280 x 800

FOV 69.4° × 42.5°（±3°）

Frame 30fps

Others
Size 90mm x 25mm x 25mm

Interface Type USB-C 3.1

1.5 IMU（Optional）

The CH10X series is an attitude-sensing system that uses high-performance, small-volume
MEMS inertial devices to sense object attitude information. It integrates an inertial
measurement unit (IMU), a magnetometer, and a microcontroller equipped with an
extended Kalman fusion algorithm (EKF) device. It can output three-dimensional orientation
data based on local geographical coordinates calculated by the sensor fusion algorithm,
including absolute reference heading angle, pitch angle, and roll angle. Calibrated raw
sensor data can also be output. The IP68 waterproof shell-type package can be easily
integrated into the user's system.

Attitude angle output accuracy

Attitude angle Typical Value

Roll angle/pitch angle-static error 0.8°

Roll angle/pitch angle-dynamic error 2.8°

Heading and angle accuracy during movement 3°

Gyroscope

Parameters Value

Measuring range ±2000°/s

Bias stability 10°/h

Scale non-linearity ±0.1% (full range)

Noise density 0.08

Acceleration sensitivity 0.001°/s/g

Accelerometer

Parameters Value

Measuring range ±8G (1G=1x gravity acceleration)

Bias stability 30mG

Non-linearity ±0.5% (full range)

Noise density 120

Magnetic sensor parameters

Parameters Value

Measuring range ±8G（Gauss）

Non-linearity ±0.1%

Resolution 0.25mG

1.6 RS-Helios-16P

RS-Helios-16P is a 16-line lidar mass-produced by RoboSense. It is the first domestic and
world-leading small lidar. It is mainly used for autonomous driving vehicle environment
perception, and robot environment perception, human-machine surveying, and mapping.
RS-Helios-16P has 16 built-in laser components. It emits and receives high-frequency laser
beams at the same time. Through 360 ° rotation, it performs real-time 3D imaging and
provides accurate three-dimensional space point cloud data and object reflectivity, allowing
the machine to obtain reliable Environmental information and provide a strong guarantee
for positioning, navigation, obstacle avoidance, etc.

Item Parameters

Range 0.2m~150m(110m@10% NIST)

Range Accuracy ±2cm

Points Per Second 288,000pts/s(Single Return)

576,000pts/s(Dual Return)

Field of View (Vertical) -15°~＋15°

Vertical Resolution 2°

Frame Rate 10Hz/ 20 Hz

Laser Safety Classification Class 1

Weight(Without cabling) ~1.0kg

Power Consumption 11W

Voltage 9V~32V

Operating Temperature -30℃~＋60℃

2 Instructions for Hardware Installation
and Electricity

2.1 SCOUT MINI Pro Kit Installation

2.1.2 SCOUT MINI Pro

The SCOUT MINI Pro scientific research and education kit bracket features a stacked
design, providing a well-organized structure. The frame utilizes sheet metal for support,
allowing customers to easily expand connections. A high-definition display is
conveniently positioned at the rear for customer debugging purposes. The bottom
section incorporates a hollow sheet metal bracket, which is assembled with the standard

aluminum profile bracket on top of the SCOUT MINI. The computing unit of the SCOUT
MINI Pro is located on the first floor. The second layer primarily consists of the USB-HUB
expansion interface, USB to CAN module, and Intel RealSense D435. The third layer
houses the voltage stabilizing module, while the top layer currently accommodates a VLP
16 lidar. For specific installation locations and schematic diagrams, please refer to the
figure provided below.

2.2 Electricity and Communication Connection

2.2.2 SCOUT MINI Pro

SCOUT MINI Pro provides power and communication interfaces for upper equipment
through the aviation expansion interface of the chassis. The power supply of the SCOUT
MINI chassis power expansion interface (maximum power output supports 24V@5A) comes
from the battery of the chassis. Without voltage stabilization and voltage regulation modules,
in order to power other expansion equipment, it is necessary to add voltage stabilization and
voltage regulation equipment. To facilitate later use, we chose 19V and 12 V voltage
stabilizing modules. The 19V voltage stabilizing module mainly provides power input for
Nvidia AGX Xavier, and the 12V voltage stabilizing module provides power input for VLP-16
lidar, USB HUB, and wireless routers.

The external topological connection of Nvidia AGX Xavier, serving as the core computing
unit, is as follows. The network port of Xavier is connected to the router's network port,
enabling remote desktop connection, access, and debugging. This setup also allows for the
expansion of other network devices. Additionally, an externally added USB-HUB with
independent external power supply is incorporated. The USB-HUB facilitates the connection
of D435 binocular camera, LCD screen, and other peripherals.

2.3 Sensor Expansion

External expansion mainly involves mechanical installation, power supply, and
communication expansion. In terms of power supply expansion, we carefully considered this
issue during the early stage of selecting the power supply voltage stabilizing module. As a
result, the module has a certain margin reserved to accommodate potential power needs.
For communication expansion, we added a USB-HUB and wireless gateway to the device to
enable access to more devices.

3 Development Guide

3.1 ROS Development Introduction

3.1.1 ROS History

The rapid advancement of hardware technology has not only facilitated the progress and

complexity of the robotics field but also presented significant challenges to the software
development of robotic systems. With an increasing abundance of robot platforms and
hardware devices, there is a growing demand for software code reusability and modularity.
However, existing robot systems often fail to meet these requirements adequately. In
comparison to hardware development, software development in this field has been
comparatively insufficient.

To address the significant challenges faced by robot software development, developers and
research institutions worldwide have devoted resources to the creation of universal software
frameworks for robots. In recent years, several remarkable robot software frameworks have
emerged, greatly facilitating software development efforts. Among these frameworks, the
Robot Operating System (ROS) stands out as one of the most exceptional.

ROS is a flexible framework designed for the creation of robot software. It seamlessly
integrates numerous tools, libraries, and protocols, offering functionalities akin to those
provided by operating systems. These functionalities include hardware abstraction
description, management of underlying drivers, execution of shared functions,
inter-program message passing, and program release package management. ROS
effectively simplifies the creation of complex tasks and enables stable behavior control across
diverse and intricate robot platforms.

3.1.2 ROS Concept

The concept of ROS includes three layers: the file system layer, computing layer, and
community layer. The primary objective of ROS is to enhance software reusability in robot
research and development. To achieve this goal, ROS adopts a distributed structure,
enabling each functional module within the framework to be designed, compiled, and
executed independently, while being loosely coupled with other modules.

ROS primarily offers functionalities and mechanisms such as hardware abstraction,
underlying drivers, message passing, program management, and application prototypes for
robot development. It also integrates various third-party tools and library files to assist users
in swiftly establishing, writing, and integrating robot applications across multiple machines.
Moreover, the functional modules within ROS are encapsulated within independent function
packages (Packages) or meta-function packages (Meta Packages), facilitating sharing and
distribution within the community.

3.1.3 ROS Node

A node represents a single process running the ROS graph. Every node has a name, which it
registers with the ROS master before it can take any other actions. Multiple nodes with
different names can exist under different namespaces, or a node can be defined as
anonymous, in which case it will randomly generate an additional identifier to add to its

given name. Nodes are at the center of ROS programming, as most ROS client code is in the
form of a ROS node which takes actions based on information received from other nodes,
sends information to other nodes, or sends and receives requests for actions to and
from other nodes.

3.1.4 ROS Message

The most important communication mechanism between nodes is message communication
based on the publish/subscribe model. Each message is a strict data structure, supporting
standard data types (integer, floating point, Boolean, etc.), and also supports nested
structures and arrays (similar to the structure struct in C language). It can also be configured
based on Requirements are defined by developers themselves.

3.1.4.1 ROS Topic

Messages are delivered in a publish/subscribe manner. A node can publish messages for a
given topic (called a publisher/Talker), or it can pay attention to a topic and subscribe to
specific types of data (called a subscriber/Listener). Publishers and subscribers do not know
each other's existence. There may be multiple nodes in the system publishing or subscribing
to messages on the same topic at the same time.

3.1.4.2 ROS Service

Although the topic-based publish/subscribe model is a very flexible communication model,
it is not suitable for the two-way synchronous transmission model. In ROS, we call this

synchronous transmission mode Service, which is based on the Client/Server model and
contains two parts of communication data types: one for requests and the other for
responses. Similar to a web server. Unlike topics, only one node in ROS is allowed to provide
a specified named service.

3.1.4.3 ROS File System

Similar to an operating system, ROS organizes all files according to certain rules, and files
with different functions are placed in different folders.
Function package (Package): Function package is the basic unit in ROS software, including
ROS nodes, libraries, configuration files, etc.
Package Manifest: Each function package contains a package manifest named package.xml,
which is used to record the basic information of the function package, including author
information, license information, dependency options, compilation flags, etc.
Meta Package: In the new version of ROS, the concept of the original function package set
(Stack) is upgraded to a "meta function package", whose main function is to organize
multiple function packages for the same purpose. For example, a ROS navigation
meta-function package will include multiple functional packages such as modeling,
positioning, and navigation.
Meta-function package list: Similar to the function package list, the difference is that the
meta-function package list may include function packages that need to be depended on at
runtime or declare some reference tags.

3.2 Start up and shut down

3.2.1 Installation

3.2.1.1 Tool

Set of hexagonal tools.

3.2.1.2 Sensors holder and mobile base

SCOUT MINI Pro

When the product is ready for shipping, the sensor holder is separated from the
Scout MINI. User need to use tool to set the sensor holder on the Scout MINI.
Firstly, put the four slider nuts into the slide way each side on the Scout MINI , and
then use the hexagonal tool to screw corresponding four screws on the holder to
the platform. Please refer to the figure shown below.

3.2.1.3 HD Display Installation

SCOUT MINI Pro

Put the HD display into the display holder horizontally, as shown in the figure below.
Then settle the display holder with screws and nylon posts to the holes on both sides.

3.2.2 Checking before start up

 Check whether any wiring harness connections are disconnected;
 Please make sure to operate in a relatively open area without large area of water .

The environment is relatively open and stable, there are no flammable, explosive
and other dangerous goods around；

 The whole machine is complete, the wiring harness is intact and there is no break,
and the sensors are not damaged.

3.2.3 Mouse and keyboard

This Kit is not provided with mouse and keyboard, users can purchase it based on
requirement, and can be connected with the USB interface of the computing unit or the USB
HUB.

3.2.4 Power on

3.2.4.2 SCOUT MINI Pro

Press the power button on the Scout MINI, as shown in the figure below.

3.2.5 Computing Unit Login

After pressing the power button of the Scout MINI , the computing unit will automatically
log in and show the following interface, the root authority password and system login
password are agx .

3.2.6 Shut Down

If you need to shut down he system, do not press the power button directly because thel
computing unit is running. Enter the command $poweroff in the terminal or click shut
down of the drop-down menu, as shown in the figure below, wait until the display shows
no signal input, then press the power button to shut down the system.

3.3 SCOUT MINI Pro Development Environment

（Ubuntu，ROS，Gazebo，RVIZ）

Ubuntu 18.04

ROS melodic

Gazebo 9.0

RVIZ -

It has passed the test and can be used normally under the above environment.

3.4 Remote Desktop

3.4.1 Download the corresponding operating system remote

desktop software on the host computer

Open the wireless network settings of the host computer, it shows that there are two signals
from the router GL-AR750(respectively), please connect to the 5G frequency band, the
default password is goodlife

3.4.2 Xavier connection (make sure the computer unit is power

on)

3.4.2.1 Choose connection object

3.4.2.2 Click Yes

3.4.2.3 Username：agilex Password：agx Choose to save the password.

3.4.2.4 Keep clicking the default OK

3.4.2.5 Enter the default password agx

3.4.2.6 Successful connection

3.4.3 Network port to connect to remote desktop

3.4.3.1 Enter the router, the default address is 192.168.8.1. Select the language

and set the password

Note: After resetting the router, the default IP address is 192.168.8.1.
Enter, 192.168.8.1 in the browser, select the language, and set the password.
After the test platform is produced, the router password is unified: 12345678, and the IP
address is 192.168.1.1

3.4.3.2 Click USE as LAN port

3.4.3.3 Successfully set to LAN port mode, now you can connect the Kit with the host
computer through a network cable for access

3.5 ROS Installation

Install Source

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

or source from China

sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/

$DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list'

Set key

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6B

ADE8868B172B4F42ED6FBAB17C654

Update

sudo apt-get update

ROS Desktop-Full Installation
Ubuntu16.04

sudo apt-get install ros-kinetic-desktop-full

Ubuntu18.04

sudo apt-get install ros-melodic-desktop-full

Resolve dependencies

sudo rosdep in

rosdep update

Environment Setup
Ubuntu16.04

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

Ubuntu18.04

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

source ~/.bashrc

Install rosinstall，a convenient tool.

sudo apt install python-rosinstall python-rosinstall-generator python-wstool build-

essential

3.6 Sensors base node

3.6.1 USB To CAN Drive installation and testing

Enable gs _usb.

sudo modprobe gs_usb

Open CAN port and set the baud rate.

sudo ip link set can0 up type can bitrate 500000

If no errors occurred in the previous steps, you should now be able to view the CAN by
using command.

ifconfig -a

Testing the hardware by using can-utils.

sudo apt install can-utils

Or run the script:

rosrun scout_bringup setup_can2usb.bash

Testing the commands.

$ candump can0

3.6.2 SCOUT MINI ROS Package

scout_bringup: Start up the mobile base node.
scout_base: Control and monitor package based on ugv_sdk.
scout_description: scout_min URDF model, available for simulation of customized robots
equipped with sensors .
scout_msgs: scout_mini message format definition.

3.6.3 IMU sensor(Optional)

imu_launch: launch imu function package

roslaunch imu_launch imu_msg.launch

To view IMU data, enter in the terminal:

rostopic echo /imu/data_raw

3.6.3 RealSense D435 node ROS Package and RVIZ visualization

Realsense2_camera: Set up and start the depth camera function package, and you can use
the rviz visualization tool to view color maps, depth maps, dense point clouds, etc.

Get the rgb

roslaunch realsense2_camera rs_camera.launch

Enter rviz in the terminal to open rviz tool, click the add to add image component.

Fixed frame: choose camera_link.

Fills in the corresponding topic in image component to get the rgb picture.

Get the rgb + Depth map

roslaunch realsense2_camera rs_camera.launch

Open rviz, click the add to add DepthCloud component.

Fixed frame : choose camera_link, choose the corresponding topic in the Depth Map topic.

The depth map is shown below:

3.6.5 RS-Helios-16P

rslidar_sdk: driver package for lidar.

3.6.5.1 Set the industrial computer IP

Open the browser and enter in the browser search bar:

192.168.1.1

Enter the router management web page.
The password is uniformly set to 12345678.
Note: If the router has been reset, please enter 192.168.8.1 in the browser.

Enter the router management interface and click More Settings on the left.

Continue to select the LAN IP and change the LAN IP to 192.168.1.1

Then open computer settings and select Network.

Select the network to connect to, usually the third one, then click options to enter the
network settings

Follow these steps
Select IPv4; click the subscript on the right side of Method and select Manual; click add and
enter 192.168.1.102 in Address.
Enter 24 in Netmask, enter 192.168.1.1 in Gateway, and click save to save. The final effect is
as follows:

3.6.5.2 Start RS-Helios-16P
Start the lidar and publish the coordinate transformation of base_link-><laser_link>

roslaunch scout_bringup open_rslidar.launch

3.7 Navigation and positioning based on Gmapping

open source architecture

3.7.1 Autonomous Navigation Practice of Lidar

The RS-Helios-16P radar is a 16-beam laser radar with a 2° increment, covering 15° in both the
upward and downward directions. As the RS-Helios-16P directly outputs point cloud data, it
includes laser data from all 16 beams. Gmapping mapping only requires data from one beam, so
it is necessary to compress the point cloud data. At this point, you can use the ROS package
provided by VLP to compress and output point cloud data to /scan. Alternatively, you can utilize
the pointcloud_to_laserscan package that we provide for compressing point cloud data. Due to
the scanning angles of 3D laser radar, the scanning blind spots are fewer compared to 2D radar.
Once the scan data is obtained, it can be fed to Gmapping for mapping. Provide a relatively
reliable odometer information and correct coordinate transformations, and Gmapping mapping
can be performed.

3.7.1.1 Autonomous navigation practice of lidar

Slam mapping practice:

(1) Start the lidar and publish the coordinate transformation of base_link-><laser_link>

roslaunch scout_bringup open_rslidar.launch

（2）Launch gmapping node
Gmapping Algorithm:

roslaunch scout_bringup gmapping.launch

Use the joytick to control the robot to move around the scene. After building the map, save
the map to the specified directory (usually to ‘description’). The name of this map is ‘map’.
Please be careful not to repeat the map name.

rosrun map_server map_saver –f ~/catkin_ws/src/scout_base/scout_description/maps/map

Note：The last ‘map’ is the map name. Any English characters can be used.

Cartographer Algorithm

roslaunch scout_bringup scout_cartographer.launch

Use the joytick to control the robot to move around the scene. After building the map, save
the map to the specified directory (usually to ‘description’). The name of this map is ‘map’.
Please be careful not to repeat the map name.

rosrun map_server map_saver -f ~/catkin_ws/src/scout_base/scout_description/maps/map

Autonomous navigation practice:
(1) Start the lidar and publish the coordinate transformation of base_link-> <laser_link>.

roslaunch scout_bringup open_rslidar.launch

（2）Start move_base navigation.

roslaunch scout_bringup navigation_4wd.launch

Note: If you need to customize the opened map, please open the navigation.launch file to
modify the parameters, as shown in the figure below. Please modify the marked horizontal
line to the name of the map you want to open.

（3）Correct the actual position of the chassis in the scene on the map displayed in rviz by
publishing an approximate position and use a joystick to correct the chassis rotation.
Correction is completed when the laser shape overlaps the scene shape in the map.

After setting the positioning, the laser shape and the scene shape in the map have basically
overlapped, and the correction is completed. As shown below

（4）Set the target point on the multi-point navigation plug-in on the left column, click to
start navigation, and switch the controller to command control mode.

The target point is generated, as the picture shown below.

Click to start navigation, the map has generated a path (in green), and it will automatically
navigate to the target point.

3.8 Navigation and positioning on vision and laser

3.8.1 rtamap algorithm introduction

The rtabmap algorithm provides an appearance-based positioning and composition
solution that is independent of time and scale. Aimed at solving online closed-loop
detection problems in large environments. The idea of the solution is that in order to meet
some limitations of real-time performance, closed-loop detection only uses a limited

number of anchor points, and at the same time can access the anchor points of the entire
map when needed.

3.8.2 rtabmap mapping algorithm

(1) Launch the radar. Enter the command in the terminal:

roslaunch scout_bringup open_rslidar.launch

(2) Launch the realsense. Enter the command in the terminal:

roslaunch realsense2_camera rs_aligned_depth.launch

(3) Launch the rtamap algorithm mapping mode. Enter the command in the terminal:

roslaunch scout_bringup rtabmapping.launch

When the rviz interface shown is in the picture below, the rtbmap mapping mode starts
successfully.

After building the map, you can terminate the program directly and the built map will be
automatically saved in the .ros file in the home directory with the file name rtabmap.db.
The .ros folder is a hidden folder and needs to be displayed through the Ctrl+h command.

3.8.3 rtabmap navigation algorithm

(1) Launch the LiDAR. Enter the command in the terminal:

roslaunch scout_bringup open_rslidar.launch

(2) Launch the realsense. Enter the command in the terminal.

roslaunch realsense2_camera rs_aligned_depth.launch

(3) Launch the mapping mode. Enter the command in the terminal:

roslaunch scout_bringup rtabmapping.launch localization:=true

(4) Launch move_base. Enter the command in the terminal:

roslaunch scout_bringup scout_rtab_navigation.launch

Because we use visual positioning, there is no need to make corrections when using rtabmap
navigation. You can directly start setting the target point for navigation. The operation steps
are shown in the figure.
Set the target point on the multi-point navigation plug-in on the left column, click to start
navigation, and switch the handle to command control mode.

The target has been generated.

Click to start navigation. The map has generated a path (green) and will automatically
navigate to the target point.

3.9 Visual Application

3.9.1 Traffic lights identification

3.9.1.1 Function Introduction

After detecting the traffic light target through darknet_ros, it is necessary to identify the
traffic light color and position it in the three-dimensional space to generate the positional
relationship between the object and the camera. This method can only achieve the
identification and positioning of traffic lights, but cannot obtain the traffic light posture. A
depth camera is required, and its recognition distance depends on the depth camera range.

3.9.1.2 Operation
Launch the realense depth camera. Enter the command in the terminal:

roslaunch realsense2_camera rs_camera.launch

Launch the yolo_v3. Enter the command in the terminal:

roslaunch darknet_ros yolo_v3_tiny.launch

Launch the traffic lights identification function:

roslaunch scout_deeplearning traffic_light_located.launch

3.9.2 QR code Tracking

3.9.2.1 Function Introduction

After QR code recognition through ar_track_alvar, the location information of the QR code is
obtained and the TF relationship between the QR code and the camera is generated.

3.9.2.2 Operation

Launch realsense depth camera. Enter the command in the terminal:

roslaunch realsense2_camera rs_camera.launch

Launch the QR code identification. Enter the command in the terminal:

roslaunch scout_visions ar_code.launch

Launch the tracking function. Enter the command in the terminal:

roslaunch scout_visions ar_control.launch

Common problems

1. CAN0 cannot be recognized

1) It may be a problem with the USB interface on the computer and needs to be replaced.
2) Or maybe there are no gs_usb drivers. Take the TX2 for example and add the gs_usb
module.

git clone https://github.com/HubertD/socketcan_gs_usb.git

cd socketcan_gs_usb

make

If there is error during ‘make’, please recompile the kernel.

cd /lib/modules/4.4.38-tegra/

cd build

sudo make

Go back to the socketcan_gs_usb directory, execute make, and add the gs_usb.ko file after
successful compilation.

sudo modprobe can_dev can insmod gs_usb.ko

ifconfig -a

There is one more can2, added successfully!

2. There is no data returning back after executing candump can0

1) There may be a problem with the microUSB cable and need to replace it with a new one.
2) The high and low connections of the CAN are reversed. The yellow one should be
connected to can_H and the blue one should be can_L. If the connection is reversed, it needs
to be replaced.
3) Virtual machine. If you are using a virtual machine, you will not be able to receive data.

4) USB to CAN module fail.
5) gs_usb module is not enabled.

3. If ‘device or resource busy’ occurs

It means that it may be enabled repeatedly. In this case, you need to unplug and plug the
USB port again to solve the problem.

4. Recognized as other serial number. For example: can2

You can change all ‘can0’ in the code to ‘can2’

5. If ‘Network is down’ occurs

The Can may be not enabled. Execute the following command:

rosrun scout_bringup setup_can2usb.bash

6. The asio.hpp problem

Execute the following command:

sudo apt-get install libasio-dev

7. ‘pcl_ros’ occurs when compiling

Execute the following command:

sudo apt-get install ros-melodic-pcl-ros

8. Errors occur when launching LiDAR

1. ERROR：“base_link” passed to lookupTransform argument source_frame does not exist.
The error is caused by TF not being fully started. It will be automatically corrected after it is
fully started.
2. ‘Waiting for laser_scans...’
(1) Check the whether the cable of LiDAR is correctly connected
(2) Check whether the Router’s network segment is:

192.168.1.1

(3) Check the ip address of IPC. The default address is

192.168.1.102

Appendix

Appendix1 Basic Operating Commands

2.1 Directory operating commands

(1) Directory switch: cd

① cd / switch to the root directory

② cd /usr switch to the usr directory under the root directory

③ cd ../ switch to the upper level directory or cd ..

④ cd ~ switch to the home directory

⑤ cd - switch to the last visited directory

(2) Directory view: ls

① ls: view all directories and files in the current directory

② ls -a: view all directories and files in the current directory (including hidden files)

③ ls -l or ll: list view all directories and files in the current directory (list view, which displays more
information)

④ ls /dir: view all directories and files in the specified directory, like: ls /usr

(3) Create directory: mkdir

① mkdir aaa: create a directory named aaa in the current directory

② mkdir /usr/aa: create a directory named aaa in the specified directory

(4) Show hidden directory: Ctrl+h

In the folder, you can display the hidden folders in the folder by Ctrl+h

(5)Terminate program: Ctrl+c

Enter the command Ctrl+c in the terminal to forcefully terminate the program being executed

2.2 ROS commonly used commands

(1) Compile command: catkin_make

Used to compile packages in the entire workspace

(2) Initialize workspace: catkin_init_workspace

Used to initialize the workspace when creating the workspace for the first time

(3) Create package: catkin_create_pkg

Used to create a package, and its syntax is:

catkin_create_pkg <package_name> [depend1] [depend2] [depend3]...

（4）Node running command

① rosrun is used to run the .cpp files and the .py files, and its syntax is:

rosrun package_name node_name

② roslaunch is used to run .launch files. In the launch files, the .cpp files and the .py files can be
called at the same time, and its syntax is:

roslaunch package_name node_name

Appendix2 Parameter Configuration of Navigation

Package

If you need to try to debug the parameters in the package yourself, you can refer to the following
list.

7.1 Configurable parameters in the gmapping package

Parameter Type Default Description

~throttle_scans int 1

The scan data threshold to be

processed; the default is to

process 1 scan data at a time (it

can be set larger to skip some scan

data)

Parameter Type Default Description

~base_frame string base_link Robot base coordinate system

~map_frame string map Map coordinate system

~odom_frame string odom Odometer coordinate system

~map_update_interval float 5.0 Map update frequency

~maxUrange float 80

Detect the maximum available

range, that is, the range that the

beam can reach

~sigma float 0.05
Standard deviation of endpoint

matching

~kernelSize int 1
Used to find the corresponding

kernel size

~lstep float 0.05 Translation optimization step

~astep float 0.05 Rotation optimization step

~iterations int 5 Scan matching iterations

~lsigma float 0.075
Laser standard deviation for

likelihood calculation

~ogain float 3.0
Used for smooth resampling effect

during likelihood calculation

Parameter Type Default Description

~lskip int 0
The number of beams skipped in

each scan.

~minimumScore float 0.0
The lowest value of the scan

matching result

~srr float 0.1

The mileage error during

translation as a translation function

(rho/rho)

~srt float 0.2

The mileage error during

translation as a rotation function

(rho/theta)

~str float 0.1
The mileage error during rotation

as a translation function(theta/rho)

~stt float 0.2
The mileage error during rotation

as a rotation function (theta/theta)

~linearUpdate float 1.0

The robot translates a certain

distance and processes the laser

data once

~angularUpdate float 0.5
The robot rotates a certain

distance and processes the laser

Parameter Type Default Description

data once

~temporalUpdate float -1.0

If the latest scan processing is

slower than the update, one scan

is processed. Turn off time-based

updates when the value is

negative.

~resampleThreshold float 0.5
Resampling threshold based on

Neff

~particles int 30 Number of particles in the filter

~xmin float -100.0
The initial minimum size of the

map in the x direction

~ymin float -100.0
The initial minimum size of the

map in the y direction

~xmax float 100.0
The initial maximum size of the

map in the x direction

~ymax float 100.0
The initial maximum size of the

map in the y direction

~delta float 0.05 Map resolution

Parameter Type Default Description

~llsamplerange float 0.01
The translation sampling distance

of likelihood calculation

~llsamplestep float 0.01
The translation sampling step of

likelihood calculation

~lasamplerange float 0.005
The angle sampling distance of

likelihood calculation

~lasamplestep float 0.005
The angle sampling step of

likelihood calculation

~transform_publish_period float 0.05 TF transform publishing period

~occ_thresh float 0.25
The threshold of raster map

occupancy rate

~maxRange float —— The maximum range of sensor

7.2 Configurable parameters in the cartographer package

Parameter Default Analysis

map_frame map

The ID of the ROS coordinate

system used to publish submaps,

the parent coordinate system of

the pose, usually "map".

Parameter Default Analysis

tracking_frame base_footprint

The ID of the ROS coordinate

system tracked by the SLAM

algorithm. If IMU is used, its

coordinate system should be

used, usually "imu_link".

published_frame odom

The ID of the ROS coordinate

system used to publish the pose

sub-coordinate system, like the

"odom" coordinate system. If an

"odom" coordinate system is

provided by different parts of the

system, in this case, the "odom"

pose in the map_frame will be

published. Otherwise, it may be

appropriate to set it to

"base_link".

odom_frame odom

It is enabled when

provide_odom_frame is true. The

coordinate system is used to

publish local SLAM results

Parameter Default Analysis

between published_frame and

map_frame, usually "odom".

provide_odom_frame true

If enabled, local,

non-closed-loop, and

continuous poses will be

published as odom_frame in

map_frame.

use_odometry false

If enabled, subscribe to

nav_msgs/Odometry messages

on the "odom" topic. The

mileage information will be

provided, which is included in

SLAM.

num_laser_scans 1

The number of laser scanning

topics subscribed. Subscribe to

sensor_msgs/LaserScan on the

"scan" topic of one laser scanner

or subscribe to the topics

"scan_1", "scan_2", etc. on

multiple laser scanners.

Parameter Default Analysis

num_multi_echo_laser_scans 0

The number of subscribed

multi-echo laser scanning topics.

Subscribe to

sensor_msgs/MultiEchoLaserScan

on the "echoes" topic of a laser

scanner or subscribe to the

topics "echoes_1", "echoes_2",

etc. for multiple laser scanners.

num_subdivisions_per_laser_scan 1

The number of point clouds that

divide each received (multi-echo)

laser scan. The subdivision scan

can cancel the scan acquired by

the scan when the scanner is

moving. There is a corresponding

trajectory builder option to

accumulate subdivision scans

into the point cloud that will be

used for scan matching.

num_point_clouds 0
The number of point cloud topics

to be subscribed to. Subscribe to

Parameter Default Analysis

sensor_msgs/PointCloud2 on the

"points2" topic of a range finder

or subscribe topics "points2_1",

"points2_2", etc. for multiple

range finders.

lookup_transform_timeout_sec 0.2
The timeout seconds of looking

up and transforming with tf2.

submap_publish_period_sec 0.3

The period (in seconds) for

publishing submaps, eg.0.3

seconds.

pose_publish_period_sec 5e-3

The period (in seconds) for

publishing poses, eg. 5e-3, with a

frequency of 200 Hz.

trajectory_publish_period_sec 30e-3

The period for publishing

trajectory tag in seconds, eg.

30e-3, lasting 30 milliseconds.

7.3 Configurable parameters in the amcl package

Note: The parameter configuration files of the amcl package are: amcl_param_diff.yaml (the file is the

amcl parameter file used in the four-wheel differential, omnidirectional wheel, and track motion

modes), and amcl_param.yaml (the file is the amcl parameter file used in the Ackermann motion

mode) .

Parameter Type Default Description

min_particles int 100
The minimum number of particles

allowed.

max_particles int 5000
The maximum number of particles

allowed.

kld_err double 0.01

The maximum error between the true

distribution and the estimated

distribution.

kld_z double 0.99

The upper normal quantile of (1-p),

where p is the probability that the error

on the estimated detuning will be less

than kld_err.

update_min_d double 0.2m

A translation movement needs to be

performed before performing the filter

update.

update_min_a double
π/ 6.0

radians

A rotation movement needs to be

performed before performing the filter

update.

resample_interval int 2
The number of filter updates required

before resampling.

Parameter Type Default Description

transform_tolerance double 0

The time at which the published

transformation will be post-processed to

indicate that the transformation will be

effective in the future.

recovery_alpha_slow double 0

The exponential decay rate of the slow

average weight filter is used to decide

when to recover by adding random

poses. A good value may be 0.001.

recovery_alpha_fast double 0.0m

The exponential decay rate of the fast

average weight filter is used to decide

when to recover by adding random

poses. A good value may be 0.1.

initial_pose_x double 0.0m

The initial pose average (x), used to

initialize the filter with Gaussian

distribution.

initial_pose_y double 0.0rad

The initial pose average (y), used to

initialize the filter with Gaussian

distribution.

initial_pose_a double 0.5 * The initial pose average (yaw), used to

Parameter Type Default Description

0.5m initialize the filter with Gaussian

distribution.

initial_cov_xx double
0.5 *

0.5m

The initial pose covariance (x * x), used to

initialize the filter with Gaussian

distribution.

initial_cov_yy double -1.0 Hz

The initial pose covariance (y * y), used to

initialize the filter with Gaussian

distribution.

initial_cov_aa double 0.5 Hz

The initial pose covariance (yaw * yaw),

used to initialize the filter with Gaussian

distribution.

gui_publish_rate double FALSE
The maximum rate (Hz) of publishing

visual scans and paths. -1.0 is disabled.

save_pose_rate double FALSE

Store the maximum rate (Hz) of the last

estimated pose and covariance of the

parameter server in the variables

~initial_pose_ and ~initial_cov_. This

saved pose will be used in subsequent

runs to initialize the filter. -1.0 is

Parameter Type Default Description

disabled.

use_map_topic bool -1

When set to be true, AMCL will subscribe

to the map topic instead of making a

service call to receive its map.

first_map_only bool -1

When set to be true, AMCL will only use

the first mapping it subscribes to instead

of updating each time a new mapping is

received.

7.4 Configurable parameters in DWA

Parameter Type Default Description

acc_lim_x double 2.5 Robot’s x acceleration limit (m/s2)

acc_lim_y double 2.5 Robot’s y acceleration limit (m/s2)

acc_lim_th double 3.2
Robot’s rotational acceleration limit

(m/s2)

max_vel_trans double 0.55

The absolute value of the maximum

translational velocity of the robot

(m/s).

min_vel_trans double 0.1 The absolute value of the minimum

Parameter Type Default Description

translational velocity of the robot

(m/s).

max_vel_x double 0.55 Robot’s maximum x velocity (m/s)

min_vel_x double 0.0
Robot’s minimum x velocity (m/s),

negative when moving in reverse

max_vel_y double 0.1 Robot’s maximum y velocity (m/s)

min_vel_y double -0.1 Robot’s minimum y velocity (m/s)

max_rot_vel double 1.0
The absolute value of the maximum

rotation velocity of the robot (rad/s)

min_rot_vel double 0.4
The absolute value of the minimum

rotation velocity of the robot (rad/s)

yaw_goal_tolerance double 0.05

The radian tolerance of the

yaw/rotation when the controller

achieves its goal

xy_goal_tolerance double 0.10

The tolerance of the controller in the

distance between x and y when

achieving the goal (m/s)

latch_xy_goal_tolerance bool false If the goal tolerance is locked, when

Parameter Type Default Description

the robot reaches the goal xy position,

it will simply rotate into position, even

if it eventually exceeds the goal

tolerance while doing so.

sim_time double 1.7
Time to simulate the trajectory forward

in seconds

sim_granularity double 0.025
Step taken between points on a given

trajectory (m/s)

vx_samples int 3
The number of samples used when

exploring the x velocity space

vy_samples int 10
The number of samples used when

exploring the y velocity space

vth_samples int 20
The number of samples used when

exploring the theta velocity space

controller_frequency double 20.0

Call the controller’s frequency. If it is

not set in the controller's namespace,

use searchParam to read the

parameters from the parent

namespace. Use together with

Parameter Type Default Description

move_base, which means you only

need to set its "controller_frequency"

parameter and you can safely not set

this parameter.

path_distance_bias double 32.0
The weight that how close the

controller should be to the given path

goal_distance_bias double 24.0

The weight that the controller should

try to reach its local goal and it should

also control the velocity

occdist_scale double 0.01
The weight that the controller should

try to avoid obstacles

forward_point_distance double 0.325

The distance from the center of the

robot to the additional scoring point,

in meters

stop_time_buffer double 0.2

The amount of time the robot must

stop before colliding for the trajectory

to be valid, in seconds

scaling_speed double 0.25
The absolute value of the speed at

which the robot's footprint is scaled

Parameter Type Default Description

(m/s)

max_scaling_factor double 0.2
The biggest factor in scaling a robot's

footprint

publish_cost_grid bool false

Whether the cost grid that the planner

will use when planning will be

published? When it’s true,

sensor_msgs/PointCloud2 will be

available on the ~/cost_cloud topic.

Each point cloud represents a cost grid

and has a field for each individual

scoring function component and the

total cost of each cell, taking the

scoring parameters into account.

oscillation_reset_dist double 0.05

How far the robot must move in

meters before resetting the oscillation

tag

prune_plan bool true

Define whether the robot will eat the

plan when moving along the path. If

it’s set to be true, the points will fall

Parameter Type Default Description

from the end of the plan as soon as

the robots move more than 1 meter.

Brand of the group

Official Distributor

gr@generationrobots.com

+33 5 56 39 37 05
www.generationrobots.com

https://www.linkedin.com/company/generation-robots/
https://twitter.com/GenerationRobot
https://www.youtube.com/@Generationrobots
mailto:gr@generationrobots.com
mailto:david.denis@generationrobots.com
http://www.generationrobots.com/en/

	0 Product Overview
	1Configuration List and Parameters
	1.1 Shipping List
	1.1.1SCOUT MINI Pro
	1.2SCOUT MINI Introduction
	1.2.1SCOUT MINI
	1.2.2Get started quickly with Scout Mini
	1.2.2.1 SCOUT MINI Checking
	1.2.2.2 Remote Control
	1.2.2.3Remote Control Operation
	1.2.2.4SCOUT MINI Preparation
	1.2.2.5 Turn off SCOUT MINI
	1.2.2.6 Turn off Remote Controller

	1.2.3SCOUT MINI Parameters

	1.3Nvidia Xavier Introduction
	1.4Intel RealSense D435
	1.5IMU（Optional）
	1.6RS-Helios-16P

	2 Instructions for Hardware Installation and Elect
	2.1SCOUT MINI Pro Kit Installation
	2.1.2 SCOUT MINI Pro

	2.2Electricity and Communication Connection
	2.2.2 SCOUT MINI Pro

	2.3Sensor Expansion

	3 Development Guide
	3.1ROS Development Introduction
	3.1.1 ROS History
	3.1.2 ROS Concept
	3.1.3 ROS Node
	3.1.4 ROS Message
	3.1.4.1 ROS Topic
	3.1.4.2 ROS Service
	3.1.4.3 ROS File System

	3.2Start up and shut down
	3.2.1 Installation
	3.2.1.1 Tool
	3.2.1.2 Sensors holder and mobile base
	3.2.1.3 HD Display Installation

	3.2.2 Checking before start up
	3.2.3 Mouse and keyboard
	3.2.4 Power on
	3.2.4.2 SCOUT MINI Pro

	3.2.5 Computing Unit Login
	3.2.6 Shut Down

	3.3SCOUT MINI Pro Development Environment
	3.4Remote Desktop
	3.4.1 Download the corresponding operating system
	desktop software on the host computer
	3.4.2 Xavier connection (make sure the computer u
	3.4.2.1 Choose connection object
	3.4.2.2 Click Yes
	3.4.2.3 Username：agilex Password：agx Choose
	3.4.2.5 Enter the default password agx
	3.4.2.6 Successful connection

	3.4.3 Network port to connect to remote desktop
	3.4.3.1 Enter the router, the default address is

	3.5ROS Installation
	3.6Sensors base node
	3.6.1 USB To CAN Drive installation and testing
	3.6.2 SCOUT MINI ROS Package
	3.6.3 IMU sensor(Optional)
	3.6.3 RealSense D435 node ROS Package and RVIZ vi
	3.6.5 RS-Helios-16P

	3.7Navigation and positioning based on Gmapping open
	3.7.1 Autonomous Navigation Practice of Lidar
	3.7.1.1 Autonomous navigation practice of lidar

	3.8Navigation and positioning on vision and laser
	3.8.1 rtamap algorithm introduction
	3.8.2 rtabmap mapping algorithm
	3.8.3 rtabmap navigation algorithm

	3.9Visual Application
	3.9.1Traffic lights identification
	3.9.1.1Function Introduction
	3.9.2 QR code Tracking
	3.9.2.1 Function Introduction
	3.9.2.2 Operation

	Common problems
	Appendix
	Appendix1 Basic Operating Commands
	2.1 Directory operating commands
	(1) Directory switch: cd
	(2) Directory view: ls
	(3) Create directory: mkdir
	(4) Show hidden directory: Ctrl+h
	(5)Terminate program: Ctrl+c

	2.2 ROS commonly used commands
	（4）Node running command

	Appendix2 Parameter Configuration of Navigation Pa
	7.1 Configurable parameters in the gmapping packag
	7.2 Configurable parameters in the cartographer pa
	7.3 Configurable parameters in the amcl package
	7.4 Configurable parameters in DWA

