

QUICK START

Power on

Put the kit on the floor on a stable and flat surface.

Install and plug the battery power connector on the rear side of the robot. Press the white ON/OFF button on the side of the robot, nearby the Emergency Stop.

- i The IPC and safety laser scanner lights turn on, and the kit starts booting for a few tens of seconds.
- i To start safely, you can engage one of the Emergency Stops while the robot is powering ON.

Display and status

iMX6 version

Display of the 4 LEDs - when the embedded IPC is powered:

1	Power	•	The battery power is available		
2	Devices	•	The connection to the SWD® and to the safety laser scanner is active		
		*	The connection cannot be established		
3	ROS	•	The ROS environment is active		
4	Wi-Fi	•	The Internet connection is established		
		*	The VPN connection is activated (only for support)		

iMX8 version

		iMX8 ON
Power Led State	Yellow	✓

Connection to the web Control Page hosted on the embedded PC

Connect a third-party device to the Starter Kit thanks to its own Wi-Fi access point

- **I** SSID and initial password are indicated on the front plate beside the safety laser scanner or on the leaflet.
- Once a PC or tablet connected to the SWD[®] Starter Kit Wi-Fi access point, a web page is accessible with any navigator by typing the page's address: http://10.10.0.1.
- i The SLAM algorithm used by default is Hector Slam available under ROS Noetic, but other algorithms such as LaMa or Gmapping could be used.

Safety features monitoring

i The page is used to check the status of the safety features set up with the *SWD*[®] safety drives and the safety laser scanner and shows an example of map built thanks to a ROS open-source SLAM algorithm using the data from the safety laser scanner.

STO	•	when one of the two Emergency Stops is engaged, the motors are stopped (Safe Torque Off)		
SDI	•	when the safety laser scanner detects an obstacle in the short perimeter (<50cm), the motors cannot go forward (Safe Direction)		
SLS	•	when the safety laser scanner detects an obstacle in the nearby perimeter (<1m), the robot cannot exceed 0.3 m/s (Safely Limited Speed)		

5 Hand control for teleoperation (for demonstration)

- i The wireless joystick is directly connected to the embedded IPC and allows a manual teleoperation of the machine.
- i The **SWD®** Starter Kit uses standard ROS Noetic packages (using *joy* and *teleop_twist_joy*) providing interfaces with a standard console joystick.

To activate the hand controller, ROS packages must be started.

- i The status of the ROS LED can be checked to confirm that ROS is active.
- i Make sure you released the emergency buttons.
- i If the motion control becomes jerky, then the joystick might be discharged. You should see joy's LEDs blinking.

